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Abstract. 

For fixed step-size h the Strrmer method is stable for the standard test equation y = - co2y, co > O, if 
and only ifhco < 2. We show that for variable step size h~ there does not exist a (positive) limit on hco which 
ensures stability. Nor  can we guarantee stability if, in addition, we limit the step size ratio h~/h,_ 1- 
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The subject of this paper is the stability of the second order method due to 
Strrmer [6] applied to the standard test equation 

(1) y = -~o~y 

where ~o > 0. For fixed step size h the Strrmer method, appropriately expressed, is 
stable ffand only ifhco < 2. We show that for variable step size hn there does not exist 
a (positive) limit on ho~ which ensures stability. Nor can we guarantee stability if, in 
addition, we limit the step size ratio hn /h ,_  1 (except for the limitation of uniform step 
size). It seems that the result extends to any conventional explicit method for special 
second order ordinary differential equations 

fl = f ( t ,  y). 

Among explicit methods the St6rmer method, in one of its various forms, is probably 
used more often in practice than all others combined. (Consider semi-discretized 
partial differential equations and molecular dynamics.) 

This work was motivated by an investigation of symplectic methods for Hamil- 
tonian systems, see [5] and references cited therein. Symplectic methods, such as the 
Strrmer method, preserve certain abstract invariants of Hamiltonian systems. 
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Experiments [2, 3] show that symplectic methods with uniform step size give 
remarkable accuracy for long integration intervals but that this does not happen 
with variable stepsize. We were wondering whether linearized stability theory can 
account for the-observed behavior of symplectic methods, for it has been shown by 
Suris [7] that symplectic methods for special separable Hamiltonian systems are 
stable for sufficiently small values of he0 with uniform step size. However, numerical 
experiments [4] show that variable stepsize also degrades the accuracy of the 
(implicit) fourth order Gauss method, even though the Gauss methods can be shown 
to be unconditionally stable for variable step size; and, hence, linearized stability 
theory does not account for the poor performance of variable step size. 

The second order St6rmer method is usually written as 

h -  2(y. + 1 - 2y .  + y . _  1) = f ( t . ,  y.).  

This was proposed as an integrator for molecular dynamics by Verlet [-8] together 
with the equation 

~. = (Y.+ I - y . - 1 ) / 2 h  

for purposes of "output." It can be shown [1] that this is equivalent to 

h 
(2) y.+~ = y. + -2.-f( t . ,y .) ,  

Y,, + 1 = Y. + h2. + ~, 

h 
)~.+t = Y,+~ + - ~ f ( t . + l , y . + , ) .  

The leapfrog method is obtained by omitting computations ofy.  for integer values of 
n: 

One step of the StSrmer method (2) applied to the test equation (1) can be written 

(s ly ,+t  j = S where S = 
c~ ~" _ ½(hco )2  Y, L - h e s  + ~hco) 3 1 " 

The product of the two eigenvalues of the matrix above, given by its determinant, is 
always one. It can be shown that the moduli of the two eigenvalues are both equal to 
1 if and only if their sum, given by the trace of the matrix, is in the range - 2 to 2, 
whence the necessity of the condition hcs < 2 for stability. This is sufficient because it 
implies that the sum of the eigenvalues is strictly between - 2 and 2, which means 
they must be imaginary and distinct. For different step sizes hi and h2 the product of 
two such matrices will still have a determinant of 1 but a trace that could dip below 
- 2  unless a condition more stringent than h,es < 2 is imposed. For example with 
hlco = ~- and hem = 2 we get a trace of -~v4 for the matrix product. Attempts to 
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imagine how this generalizes to more than two steps led eventually to the analysis in 
the paragraphs that follow. 

The matrix S has eigenvalues e -+~° where 0 = 2 arcsin (hco/2) if we assume that 
- 2  < hoo < 2. 

It is natural to regard the matrix S as representing a rotation in phase space of - 0 
radians. With this in mind we obtain 

where 

and 

S = DQD- 1 

cos 0 sin 0~ 

Q =  - s i n 0  cos0J 

D = diag(1, cos(0/2)). 

Note that cos(0/2) > 0. Also note that 

S" = DQ"D- 1 (3) 

where 

Q" ~ eosn0 s inn0]  

= [_-sin nO cos nO J" 

To show the possibility of instability, we consider a sequence of n l steps of size hi 
followed by nz steps of size hz. The purpose of n, and n2 is to overcome any limit that 
we might care to impose on the step sizes. To show instability is equivalent to 

showing that the matrix 

s? 

has eigenvalues of moduli greater than 1, where S, and Sz have the obvious meaning. 
The determinant of this matrix is just the product of the determinants of its factors, 
which is 1. Thus we must show that the trace can become less than - 2  or greater 
than 2. Several lines of elementary manipulations beginning with (3) yield 

(cos ½02 - cos ½0,) 2 sin n202 sin n,O, 
(4) trace(S~ 2 S] ~) = 2cos(n10, + n202) - eos½Ozcos½01 

where 0, and Oz have the obvious meaning. Now choose ha, h2, nl, and n2 so that 

nlO1+n202=r~ and 01¢02 .  

Then the first term of(4) is - 2  and the second term is negative. The above choice is 
possible regardless of any (nonpathological) restriction placed on step sizes or step 

size ratios. 
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