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Abstract. The following integration methods for special second-order ordinary differential
equations are studied: leapfrog, implicit midpoint, trapezoid, Störmer–Verlet, and Cowell–Numerov.
We show that all are members, or equivalent to members, of a one-parameter family of schemes.
Some methods have more than one common form, and we discuss a systematic enumeration of these
forms. We also present a stability and accuracy analysis based on the idea of “modified equations”
and a proof of symplecticness. It follows that Cowell–Numerov and “LIM2” (a method proposed by
Zhang and Schlick) are symplectic. A different interpretation of the values used by these integrators
leads to higher accuracy and better energy conservation. Hence, we suggest that the straightforward
analysis of energy conservation is misleading.
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1. Introduction. Our focus in this paper is a study of a set of methods for
systems of special (i.e., see (1) below) second-order ordinary differential equations
(ODEs). This set includes the following well-known methods: leapfrog, implicit mid-
point, trapezoid, Störmer–Verlet, and Cowell–Numerov. Of special interest to us is
the application of such methods to molecular dynamics (MD) of biomolecules. These
problems, as well as many other special second-order ODEs, are Hamiltonian systems,
and recently there has been much interest in the use of symplectic integrators in such
contexts. Symplectic methods preserve certain abstract invariants of Hamiltonian sys-
tems. Experiments [1, 2] show that symplectic methods give remarkable accuracy for
long integration intervals, and it has been shown by Suris [3] that symplectic methods
are stable for linear systems for sufficiently small values of the stepsize. Another at-
tractive feature of symplectic integrators is that the error due to a finite timestep can
be interpreted as an error in the scalar Hamiltonian function from which the force
vector is generated,1 not merely as an error in the force vector. For further infor-
mation on symplectic methods for Hamiltonian systems, see [1] and references cited
therein.
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Our aim here is to unify and simplify the formulation and analysis of several
methods for MD in the context of symplecticness. We show that the schemes above
are all members, or equivalent to members, of a one-parameter family of methods.
This makes implementation unified and comparison facile. Some of these methods
have more than one common form, and the various forms are presented here system-
atically. In the case of the Verlet–leapfrog method, such a dual representation has
been discussed in [4, 5].

Also presented are a stability analysis, an accuracy analysis based on the idea of
“modified equations,” and a proof of symplecticness. A particular by-product of this
result is a demonstration that both the fourth-order Cowell–Numerov and the method
LIM2 of Zhang and Schlick [6] are symplectic. The values used by all these integrators
can be interpreted in a slightly different and more favorable way through trajectory
transformations, leading to higher accuracy and better energy conservation. As a
consequence, we suggest that the straightforward analysis of energy conservation is
misleading. That is, energy conservation alone can suggest, for example, that the
implicit midpoint method is more accurate than the Verlet method, but in fact Verlet
is twice as accurate. Numerical experiments on a model of butane support the results
of the asymptotic analysis for the moderately low accuracies used for MD.

The idea of interpreting numerical values in a more favorable way is similar to
an idea of Butcher [7] for increasing the order of Runge–Kutta methods. In the
more specific context of symplectic integration this idea appears in a lively paper [8]
motivated by solar system dynamics. Also, earlier papers [9, 10] essentially have
the same idea. One difference between the work in [8] and our approach is that
they use Hamiltonian flows whereas we use generating functions to construct the
transformation between what they call “mapping variables” and “real variables.” Our
numerical results for molecule dynamics give further evidence of their assertion that
one can “relate the mapping variables to the real variables and consequently remove
the spurious oscillations” to a large degree.

In the family of methods we consider, all are implicit except for Verlet. Thus, it
is reasonable to question the practicality of the implicit method for biomolecular MD.
Various techniques for accelerating the solution process of the resulting nonlinear
system [11, 12] have been devised to make computational cost manageable, even
competitive at moderate timesteps. Moreover, implicit methods might be viewed as
starting points for deriving cheaper methods that have nearly as good stability and
accuracy properties. Thus, further development of implicit schemes for such large-
scale problems is warranted.

We consider the system of ODEs

M
d2x

dt2
= F (x),(1)

where x is the collective position vector, M is a diagonal matrix of masses, and F
is the collective force vector. We now describe the Störmer–Verlet, leapfrog, Cowell–
Numerov, LIM2, implicit midpoint, and trapezoid schemes. The discretization known
as the second-order Störmer method is given by

1
∆t2

M(Xn+1 − 2Xn +Xn−1) = F (Xn),(2)

where ∆t is the timestep, and Xn denotes the difference approximation to x at time
n∆t. This scheme was derived from a truncation of the higher-order method used by
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Störmer [13] to integrate trajectories of electrons in the aurora borealis. Toxvaerd [14]
states that “the first known published appearance [of this method] is due to Joseph
Delambre (1791) [15, 16].” This method was proposed as an integrator for MD by
Verlet [17] together with the formula

V n =
1

2∆t
(Xn+1 −Xn−1)(3)

for calculating the velocity v = dx
dt . It is known [18, p. 80] that this combination is

equivalent to the leapfrog method, defined as

V n+1/2 = V n−1/2 + ∆tM−1F (Xn),(4)
Xn+1 = Xn + ∆tV n+1/2.(5)

The implicit discretization scheme with a different right-hand side than in (2),

1
∆t2

M(Xn+1 − 2Xn +Xn−1) =
1
12
F (Xn−1) +

5
6
F (Xn) +

1
12
F (Xn+1),(6)

is often known as “Cowell’s method.” It was used by Cowell and Crommelin [19] to
predict the return of Halley’s comet in 1909. In the context of two-point boundary
value problems it is known as “Numerov’s method.” The coefficients of the forces are
chosen to yield fourth-order accuracy.

The method “LIM2” of Zhang and Schlick [6] is defined by

1
∆t2

M(Xn+1 − 2Xn +Xn−1) = F

(
1
2

(Xn+1 +Xn−1)
)
.(7)

This method was proposed in a paper comparing performance of several implicit
integrators for the Langevin equation, including implicit-Euler and implicit midpoint.
Both LIM2 and the midpoint method were found to be superior to the first-order
implicit schemes because they possess no intrinsic (numerical) damping on the basis
of linear analysis. However, resonance problems have been recently reported and
analyzed with the implicit midpoint [20]. The implicit midpoint method is given by
the pair

1
∆t

(Xn+1−Xn) =
1
2

(V n+1 +V n),
1

∆t
M(V n+1−V n) = F

(
1
2

(Xn+1 +Xn)
)
,

(8)
and the trapezoid method is similar, using only a different force approximation:

1
∆t

(Xn+1−Xn) =
1
2

(V n+1+V n),
1

∆t
M(V n+1−V n) =

1
2
(
F (Xn+1) + F (Xn)

)
.

(9)
These two equations are known to be equivalent [21].

As we will show, all methods above are members of the one-parameter family
of symplectic methods presented in this paper. For leapfrog–Störmer–Verlet α = 0,
for Numerov–Cowell α = 1

12 , for implicit midpoint–trapezoid α = 1
4 , and for LIM2

method α = 1
2 . Equivalence here means that by some operation (applied to values

that are only local in time) we can transform values obtained by one method so that
they satisfy another. For example, if the values Xn, V n are obtained by the trapezoid
method, the transformation

X̂n = Xn − ∆t
2
V n, V̂ n = V n − ∆t

2
M−1F (Xn)
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gives values X̂n, V̂ n that would be obtained by the implicit midpoint method. (This
transformation is obtained by observing that one step of the trapezoid method is
equivalent to a step of forward Euler with timestep ∆t

2 followed by a step of backward
Euler with timestep ∆t

2 . Similarly, implicit midpoint corresponds to backward Euler
followed by forward Euler.)

2. Formulation. We now describe the basic form of our family of integrators
and associate specific values of the parameter α with different integrators. At the
beginning of step (n+1), we assume that we know the collective position and velocity
vectors Xn and V n as well as the collective force vector Fn. In particular, Fn has
been obtained by solving the nonlinear system

Fn = F (Xn + α∆t2M−1Fn),(10)

where α is the parameter defining each method within our family of schemes. Note
that (10) is an implicit equation for Fn for α 6= 0. Below we describe several forms
(e.g., 1E, 2M, 1Ē) for defining one integration step, that is, updating formulas for po-
sition, velocity, and force. Suffixes E and M distinguish between formulas that involve
evaluation (to derive the implicitly defined force) at the endpoints and midpoints, re-
spectively. Prefixes 1 and 2 are taken from standard terminology in the numerical
solution of ODEs: “1” for a one-step scheme that involves both position and veloc-
ity, “2” for a two-step scheme that only depends on position; in the latter case, the
velocity can be computed by various definitions (e.g., (3)), and this choice does not
affect the positional trajectory. Finally, we use bar notation in the propagation title
to denote a scheme that uses X̄n ≡ Xn + α∆t2Fn instead of Xn (this will become
clear below). With these notations at hand, we now define propagation forms 1E,
1M, 1Ē, 2E, 2M, and 2Ē. We show that 1E, 1M, 1Ē can be related to the Verlet (and
related leapfrog), implicit midpoint, and trapezoid schemes. Forms 2E and 2Ē can be
related to the LIM2 and Cowell methods.

Form 1E.

V n+1/2 = V n +
∆t
2
M−1Fn,

Xn+1 = Xn + ∆tV n+1/2,

Fn+1 = F (Xn+1 + α∆t2M−1Fn+1),(11)

V n+1 = V n+1/2 +
∆t
2
M−1Fn+1.

This propagation is classified as “E” because the force calculation occurs at the end
of the time subinterval (i.e., Fn+1). Within this definition, there are several ways to
write the MD equations. If we eliminate the intermediate value V n+1/2, we obtain

V n+1 = V n +
∆t
2
M−1(Fn + Fn+1)(12)

for the velocity. We can also offer a one-parameter family of formulas for the position,
of which the most interesting ones are

Xn+1 = Xn + ∆tV n +
∆t2

2
M−1Fn(13)

and

Xn+1 = Xn +
∆t
2

(V n+1 + V n)− ∆t2

4
M−1(Fn+1 − Fn).(14)
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For α = 0, (12) and (13) coincide with the known “velocity Verlet” scheme [18, p. 81].
The related leapfrog method is obtained by replacing computations of V n for integer
values of n by computations of the velocity at the midpoint of the interval only, using

V n+1/2 = V n−1/2 + ∆tM−1Fn.(15)

Instead of omitting velocities at integral n, we can also define additional positions
Xn+1/2 = Xn + ∆t

2 V
n+1/2.

If we relabel Xn−1/2 and V n−1/2 as Xn and V n, respectively, we get the midpoint
form of our propagation (not to be confused with the midpoint method).

Form 1M.

Xn+1/2 = Xn +
∆t
2
V n,

Fn+1/2 = F (Xn+1/2 + α∆t2M−1Fn+1/2),
V n+1 = V n + ∆tM−1Fn+1/2,(16)

Xn+1 = Xn+1/2 +
∆t
2
V n+1.

If we eliminate the intermediate values Xn+1/2 and Fn+1/2, we have in analogy to
(12) and (13) above

Xn+1 = Xn +
∆t
2

(V n + V n+1)(17)

for the position and a (one-parameter) family of formulas for the velocity. The most
interesting representatives of this family are

V n+1 = V n + ∆tM−1F

(
Xn +

∆t
2
V n + α∆t(V n+1 − V n)

)
(18)

and

V n+1 = V n + ∆tM−1F

(
1
2

(Xn+1 +Xn) +
(
α− 1

4

)
∆t(V n+1 − V n)

)
.(19)

Equation (17) and (19) with α = 1
4 coincide with the usual formulation of the implicit

midpoint method.
If we use X̄n rather than Xn as our variable, we have another variant.
Form 1E.

X̄n+1 = X̄n +
∆t
2

(V n+1 + V n) +
(
α− 1

4

)
∆t2M−1(Fn+1 − Fn),(20)

V n+1 = V n +
∆t
2
M−1(Fn + Fn+1).(21)

In this formulation the method is technically not symplectic for α 6= 0. With α = 1
4 ,

we recover the trapezoidal rule.
If we eliminate V n from form 1E, we obtain ∆t−2M−1(Xn+1−2Xn+Xn−1) = Fn

where Fn is defined in (10). Using the first relation to substitute for Fn in the right-
hand side of (10), we get our next form.

Form 2E.

1
∆t2

M(Xn+1 − 2Xn +Xn−1) = F (αXn−1 + (1− 2α)Xn + αXn+1).(22)
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The velocities can be recovered by setting

V n =
1

2∆t
(Xn+1 −Xn−1).(23)

For α = 1
2 this is the form given by [6] for the method LIM2.

If we eliminate V n from 1M, we have form 2M.
Form 2M.

1
∆t2

M(Xn+1 − 2Xn +Xn−1) =
1
2
Fn−1/2 +

1
2
Fn+1/2,(24)

where

Fn+1/2 = F

(
1
2

(Xn +Xn+1) + (α− 1
4

)∆t2M−1Fn+1/2
)
.(25)

The velocity is obtained from

V n =
1

2∆t
(Xn+1 −Xn−1)− ∆t

4
M−1(Fn+1/2 − Fn−1/2).(26)

We know of no use of this form in the literature.
If we eliminate V n from 1E, we have our final variant.
Form 2E.

1
∆t2

M(X̄n+1 − 2X̄n + X̄n−1) = αFn−1 + (1− 2α)Fn + αFn+1,(27)

with the velocity formula:

V n =
1

2∆t
(X̄n+1 − X̄n−1)− α∆t

2
M−1(Fn+1 − Fn−1).(28)

With α = 1
12 , this form coincides with the Cowell method. The formal order of

accuracy (four) is such only in this form and only for X̄n. Some favor this form [14]
because it is in some sense canonical: it involves only those “special” values at which
the force is evaluated, all other values being regarded as ad hoc combinations of these.

Although six forms have been offered above, we favor form 1E for the following
reasons:

1. This form has good round-off error compared with forms 2E, 2M, 2E since
cancellation is avoided [22, p. 472]. Because of the exponential growth of
errors [18], this aspect cannot be ignored, especially with the use of single
precision.

2. Form 1E generalizes efficiently to multiple timestepping [23, 24, 25] compared
with form 1M.

3. Form 1E is symplectic unlike form 1E, which instead of using Xn uses the
more natural values

X̄n := Xn + α∆t2M−1Fn,(29)

which are the points at which F is evaluated. Nonetheless, it can be shown
that 1Ē is equivalent to a symplectic method. Still, we prefer to use a sym-
plectic form, since this helps design method variants that retain symplectic-
ness; we also would expect that values computed in this form might be better
behaved.
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Below and in the next section we restrict ourselves to conservative forces for which
F (x) = −Ex(x) for some potential energy function E(x) where Ex(x) is the gradient
of the potential energy function. In this case the Jacobian matrix for the force vector
is symmetric. This property can be exploited, as shown in [6], to express the nonlinear
systems of equations as an optimization problem. If we regard f = Fn as our variable
of unknowns, the problem becomes finding a minimum of

1
2

∆t2fTM−1f + α−1E(Xn+1 + α∆t2M−1f).(30)

For α = 0 (explicit method), the second term becomes ∆t2Ex(Xn+1)TM−1f . If
instead we use X = Xn+1 + α∆t2M−1f as the variable, the minimization problem
for the “dynamics function” Φ(X) is formed, where

Φ(X) =
1
2

∆t−2(X −Xn+1)TM(X −Xn+1) + αE(X).(31)

Clearly, many solutions that minimize Φ exist [26]. However, we want a nearby
solution in some sense. For example, we may seek the solution that will be obtained
by analytical continuation as α varies from 0 to its desired value. This solution will
be well defined as long as the Hessian of the dynamics function Φ remains positive
definite. When positive definiteness does not hold, we may consider the timestep to
be too large.

3. Accuracy. We now analyze accuracy by the “method of modified equations,”
introduced in computational fluid dynamics [27, 1] to interpret the effect of discretiza-
tion error as a change in the mathematical equations. The idea is based on the as-
sumption that the numerical values (Xn, V n) are exact values of functions (X(t), V (t))
that satisfy differential equations with slightly different right-hand sides, which are
assumed to possess asymptotic expansions in powers of ∆t. We, in fact, use P = MV
(momenta) instead of V as variables so that our given system is Hamiltonian:

dx

dt
= Hp(x, p),

dp

dt
= −Hx(x, p),(32)

where H(x, p) = 1
2p

TM−1p+ E(x).
After a somewhat lengthy calculation, described in the subsection that follows,

we get a Hamiltonian system, at least up to O(∆t4),

dX

dt
= H̃p(X,P ) +O(∆t4),

dP

dt
= −H̃x(X,P ) +O(∆t4)

with

H̃(X,P ) =
1
2
PTM−1P + E(X)

+ ∆t2
(

1
12

(M−1P )TExx(X)M−1P −
(

1
24

+
1
2
α

)
Ex(X)TM−1Ex(X)

)
(33)

where Exx(X) is the Hessian of the potential energy function. One can carry the
expansion as far as one likes (although it may not converge if carried to infinity).
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A similar result holds for the M form of the method. Again, after some calcula-
tions, given in the subsection that follows, we obtain a Hamiltonian system, at least
up to O(∆t4), with

H̃(X,P ) =
1
2
PTM−1P + E(X)

+ ∆t2
(
− 1

24
(M−1P )TExx(X)M−1P +

(
1
12
− 1

2
α

)
Ex(X)TM−1Ex(X)

)
.

(34)

3.1. Calculation of modified Hamiltonians. We begin with the E form.
First note that

Fn = −Ex(Xn) + α∆t2Exx(Xn)M−1Ex(Xn) +O(∆t4).

Expanding (14) and (12) in a Taylor series about t = tn + 1
2∆t, we get

∆t
dX

dt
+

∆t3

24
d3X

dt3
= ∆tM−1P +

∆t3

8
M−1 d

2P

dt2
+

∆t3

4
d[M−1Ex(X)]

dt
+O(∆t5),

∆t
dP

dt
+

∆t3

24
d3P

dt3
= −∆tEx(X)− ∆t3

8
d2

dt2
[Ex(X)]

+α∆t3Exx(X)M−1Ex(X) +O(∆t5),

where X = X(tn + ∆t
2 ), P = P (tn + ∆t

2 ). Hence

dX

dt
= M−1P + ∆t2

(
1
8
M−1 d

2P

dt2
+

1
4
M−1Exx(X)

dX

dt
− 1

24
d3X

dt3

)
+O(∆t4),

dP

dt
= −Ex(X) + ∆t2

(
−1

8
Exxx(X)

(
dX

dt
,
dX

dt

)
− 1

8
Exx(X)

d2X

dt2

+αExx(X)M−1Ex(X)− 1
24
d3P

dt3

)
+O(∆t4).

The double summation involved in Exxx(X) is indicated with multilinear notation.
By successive substitution we get

dX

dt
= M−1P + ∆t2

(
1
6
M−1Exx(X)M−1P

)
+O(∆t4),

dP

dt
= −Ex(X) + ∆t2

(
− 1

12
Exxx(X)M−1PM−1P

+
(

1
12

+ α

)
Exx(X)M−1Ex(X)

)
+O(∆t4);

hence (33) follows.
We obtain the result for the M form as a consequence of the result for the E form.

We begin by getting the transformation that links the two forms. For this we need to
relate values Xn, Pn to values Xn−1/2, Pn−1/2; making use of the various definitions,
we get

Xn = Xn−1/2 +
∆t
2
M−1Pn−1/2,

Pn = Pn−1/2 +
∆t
2
F

(
Xn−1/2 +

(
1
2
− 2α

)
∆tM−1Pn−1/2 + 2α∆tM−1Pn

)
,
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which is implicit in Pn. If we let hat superscripts denote values for the 1M form, we
have

X = X̂ +
∆t
2
M−1P̂ ,

P = P̂ +
∆t
2
F

(
X̂ +

(
1
2
− 2α

)
∆tM−1P̂ + 2α∆tM−1P

)
.

To make the transformation explicit, we expand it in powers of ∆t:

P = P̂ − 1
2

∆tEx(X̂)− 1
4

∆t2Exx(X̂)M−1P̂

+
α

2
∆t3Exx(X̂)M−1Ex(X̂)− 1

16
∆t3Exxx(X̂)(M−1P̂ ,M−1P̂ ) +O(∆t4).

Finally, we substitute this into (33), obtaining

H̃(X(X̂, P̂ ), P (X̂, P̂ )) =
1
2
P̂TM−1P̂ + E(X̂) + ∆t2

(
− 1

24
(M−1P̂ )TExx(X̂)M−1P̂

+
(

1
12
− 1

2
α

)
Ex(X̂)TM−1Ex(X̂)

)
.(35)

4. Stability. Stability analysis performed for the harmonic oscillator case, as
in [6], gives insight into the dynamic behavior of simple systems. That is, we examine
solution behavior for the linear-force case

d2x

dt2
= − ω2x,(36)

where ω is the natural angular velocity of the oscillator. However, nonlinearities
also play an important role; for example, investigations [28] show that the implicit
midpoint rule has to obey timestep restrictions not present for linear problems. The
long-time behavior is an entirely different problem [29].

For our stability analysis, it is more convenient to switch to the midpoint form.
We separate this form into half steps to obtain

Xn+1/2 = Xn +
∆t
2
V n,

V n+1/2 = V n +
∆t
2
M−1Fn+1/2,

V n+1 = V n+1/2 +
∆t
2
M−1Fn+1/2,(37)

Xn+1 = Xn+1/2 +
∆t
2
V n+1,

where

Fn+1/2 = F (Xn+1/2 + α∆t2M−1Fn+1/2).(38)

Denoting the force F (X) = −ω2X, we have

Fn+1/2 = −φω2Xn+1/2,(39)

where

φ := (1 + α(ω∆t)2)−1.(40)
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Using matrix multiplication to represent each of the four stages, we obtain[
ωXn+1

V n+1

]
= S

[
ωXn

V n

]
,(41)

where

S =

[
1 1

2ω∆t
0 1

] [
1 0

− 1
2φω∆t 1

] [
1 0

− 1
2φω∆t 1

] [
1 1

2ω∆t
0 1

]

=

[
1− 1

4φ(ω∆t)2 1
2ω∆t

− 1
2φω∆t 1

][
1 1

2ω∆t

− 1
2φω∆t 1− 1

4φ(ω∆t)2

]

=

[
1− 1

2φ(ω∆t)2 ω∆t(1− 1
4φ(ω∆t)2)

−φω∆t 1− 1
2φ(ω∆t)2

]
.(42)

We obtain nearly the same result for the endpoint form if we use X̄ instead of X.
It can be shown that the matrix S is power bounded if and only if φ(ω∆t)2 < 4.

If α ≥ 1
4 , this is satisfied for all ω∆t, and the method is unconditionally stable. If

α < 1
4 , this boundedness is satisfied for ω∆t < 2(1 − 4α)−1/2. Thus, we know that

the leapfrog–Störmer–Verlet method (α = 0) is stable if and only if ω∆t < 2.
If we assume that

φ(ω∆t)2 < 4,(43)

the matrix S has eigenvalues e±iθ where

θ = 2 arcsin
(√

φ
ω∆t

2

)
(44)

= ω∆t+
(

1
24
− α

2

)
(ω∆t)3 +O((ω∆t)5).

Thus, θ is method and timestep dependent. For α = 1
4 , this angular expression

simplifies to θ = 2 arctanω∆t
2 . The matrix S can be written as

S = DQD−1(45)

where

Q =
[

cos θ sin θ
− sin θ cos θ

]
(46)

and

D = diag

[
1,
(

1 +
(
α− 1

4

)
(ω∆t)2

)−1/2
]

= diag
[
1, 1 + (1− 4α) tan2 θ

2

]
.(47)

The matrix Q represents a rotation of −θ radians in phase space. Note that D22 > 0.
To study the propagation behavior in time, we examine

Sn = DQnD−1(48)
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where

Qn =
[

cosnθ sinnθ
− sinnθ cosnθ

]
.

We can find a closed form expression for the modified Hamiltonian in this case. Ex-
pressing our closed form numerical solution in terms of the variable t, we get the
evolution formula for positions and velocities:[

ωX(t)
V (t)

]
= DQt/∆tD−1

[
ωX(0)
V (0)

]
.(49)

To get the differential equation satisfied by this general solution of an initial value
problem, we differentiate with respect to t,

d

dt

[
ωX(t)
V (t)

]
= D

θ

∆t

[
0 1
−1 0

]
Qt/∆tD−1

[
ωX(0)
V (0)

]
and eliminate the initial values from these two last equations:

d

dt

[
ωX(t)
V (t)

]
=

θ

∆t
D

[
0 1
−1 0

]
D−1

[
ωX(t)
V (t)

]
.

This simplifies to

d

dt

[
X(t)
V (t)

]
=

θ

ω∆t
D22

[
0 D−2

22
−ω2 0

] [
X(t)
V (t)

]
,

which with P = V is a Hamiltonian system with Hamiltonian

θ

ω∆t
D22

(
1
2
ω2X2 +

1
2
D−2

22 P
2
)
.

Energy is conserved exactly if we use D−1
22 V

n for the velocity.2

The numerical integrator is using θ given in (44) as an approximation to the
rotation angle ω∆t. In Figure 1, we show the effective rotation versus the desired
rotation for α = 0, 1

12 ,
1
4 −

1
π2 ,

1
4 ,

1
2 . The straight line θ = ω∆t that represents the

desired rotation is shown for reference. The errors in the phase angle are also displayed
in Figure 1, θ−ω∆t. Note that the explicit method (α = 0) displays rapid divergence
from the target value as ∆t is increased. The value α = 1

12 (Cowell method) gives the
best fit for smaller values of ω∆t. The value α = 1

4 −
1
π2 (curve c) gives the best fit

over the longest achievable range, namely [0, π] (see next paragraph).
If α < 1

4 (e.g., Verlet, Numerov–Cowell), then as ω∆t ranges from 0 to 2(1 −
4α)−1/2, the effective rotation angle varies from 0 to π. If α ≥ 1

4 (e.g., midpoint,
LIM2), then, as ω∆t ranges from 0 to +∞, the effective rotation angle ranges from
0 to 2 arcsin(1/(2

√
α)). This upper bound on the rotation angle equals π for α = 1

4
(e.g., midpoint) but decreases for larger values of α; e.g., it is π

2 for α = 1
2 (e.g., LIM2).

Since θ = π is the largest attainable rotation angle, we might ask for the best uniform
approximation of the desired rotation angle ω∆t by the effective rotation angle θ for

2For α = 0, the associated value D−1
22 = (1 − 1

4 (ω∆t)2)1/2 can be compared with the value
(1− 1

4 (ω∆t)2)−1/2 obtained in [14, eqn. (14)] for the velocity scale factor in the E form of the Verlet
method.
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FIG. 1. The effective phase space rotation and associated error of various integrators for the dy-
namics of a harmonic oscillator. In (a), the effective rotation θ = 2 sin−1[ω∆t/(2(1 +αω2∆t2)1/2)]
(in radians) is plotted against ω∆t, and in (b) θ − ω∆t is also shown for various values of α that
define the integration scheme. The thick solid line corresponds to θ = ω∆t.

0 ≤ ω∆t ≤ π. It is reasonable to require θ to be well defined on this interval and
thus 2(1− 4α)1/2 ≥ π or, equivalently, α ≥ 1

4 −
1
π2 . This gives an approximation for

θ ≈ ω∆t whose graph is strictly below the true value; greater values of α cause the
graph to drop still further. Hence the best approximation is given by

α =
1
4
− 1
π2 ,(50)

which is displayed in curve c.
It should be mentioned that one could also seek the best approximation over

a shorter interval and/or the best relative rather than absolute error (since higher
frequencies have smaller amplitudes). Alternatively, an α may be sought on the
basis of energy conservation. In this case, α can be obtained in tandem with the
unknown 3N -component collective force vector by solving a slightly augmented system
of nonlinear equations

Fn+1/2 = F (qn+1/2 + αM−1∆t2Fn+1/2),

where α is chosen to yield the same energy for step n and n+1. In solving this system
it might be helpful to know that α = 1

4 is the solution in the linear case. However, this
method entails the cost of evaluating an additional force at the midpoint of the inter-
val, as well as an energy evaluation at the endpoint. Furthermore, this method is not
symplectic. We can compare this method with Simo’s energy-momentum method [30],
which uses

Fn+1/2 = σF

(
qn+1/2 +

1
4

∆t2Fn+1/2
)
,

where σ is chosen to exactly conserve energy. The advantage of the new method is
that it is much more specific to the high frequency modes for a linear problem via a
factor 1/(1 + α(ω∆t)2) rather than σ.
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5. Symplecticness. A simple algebraic test can be formulated to determine
whether a numerical integrator is symplectic. A thorough treatment of this concept
can be obtained from [1]. Specifically, a transformation between phase spaces (x, p) 7→
(X,P ) is symplectic if and only if its Jacobian matrix satisfies the following condition:[

∂X
∂x

∂X
∂p

∂P
∂x

∂P
∂p

]T [
0 I
−I 0

] [ ∂X
∂x

∂X
∂p

∂P
∂x

∂P
∂p

]
=
[

0 I
−I 0

]
.(51)

It is straightforward to show that the composition of symplectic transformations is
symplectic. To see that our methods are symplectic, we break the propagation scheme
into four stages as given at the beginning of section 4 and show that each stage is
symplectic. For a stage that advances velocity it must be shown that the Jacobian
matrix of Fn with respect to Xn is symmetric.

The E form of our method can be made symplectic by defining a velocity or, equiv-
alently, a momentum P̄ , appropriately. We set up a symplectic transformation from
(X,P ) to (X̄, P̄ ) and then obtain automatically symplecticness for the transformation
from (X̄n, P̄n) to (X̄n+1, P̄n+1). Half the transformation is, by definition,

X = X̄ + α∆t2Ex(X̄);(52)

the other half is obtained by using the generalized momenta [31, p. 60] as a conjugate
to the changed position coordinates, where

P̄ = P + α∆t2Exx(X̄)M−1P.(53)

As noted, there appears to be a widespread preference for the 2E form. One
reason, given by [14], is the feeling that “The discrete propagator in the q-space has
no prescription for the velocity.” (Here q is the same as our x.) However, we can
insist that for arbitrary Hamiltonian systems the following conditions hold:

1. the method is symplectic when rewritten in terms of position and velocity
(with momentum defined as mass times velocity), and

2. the prescription is second-order accurate.
Then there seems to be a unique formula for the velocity. We omit the argument
here except to note that it is sufficient to restrict the prescription for velocity to be in
terms of Xn−1 and Xn, since this suffices for generating all other trajectory values.

6. Pre- and postprocessing. Recall that the α = 1
12 method (Cowell’s) is

not technically fourth-order accurate unless it is expressed in form 2E; even then,
the fourth-order accuracy applies only to the position values, not the velocity values.
This sensitivity to form suggests that the other forms of the numerical scheme actually
use values obtained by some transformation of a more accurate solution. Further, it
suggests that the position and velocity values used by the scheme can be reinterpreted.
Hence, if we suitably “encode” the initial values and reverse this process for the actual
computed values, we might get a more accurate solution. This is, in fact, true not
only for the choice α = 1

12 but also for other values of α, though less dramatically.
A reinterpretation of the numerical solution is also suggested by the fact that

the M and E forms of a method are intrinsically equally good for long-time solution
propagators. Note that this reinterpretation of the numerical values is a theoretical
tool for the purposes of comparing methods; it is not necessarily suggested for an
actual long-time MD simulation. The minor local improvements in accuracy are of
little consequence for long-time integrations. However, they are useful for monitoring
energy conservation and might be useful for some other computations.
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Below we formulate a transformation for pre- and postprocessing the trajectories
that will result in a more accurate solution. The transformation is symplectic, guaran-
teeing that the transformed system of differential equations is also Hamiltonian. Let
(X,P ) denote the values used by the numerical method and let (x, p) denote trans-
formed values that represent better approximations to the true values. The easiest
way to ensure that a transformation is symplectic is to obtain it from a generating
function. Here we use a generating function of the second kind [31, p. 266]

S(X, p) = pTX + β∆t2pTM−1Ex(X),(54)

where β is a parameter. (This particular transformation was obtained on the basis of
experience and trial and error.) The transformation becomes by definition

x = Sp(X, p), P = Sx(X, p),

or

x = X + β∆t2M−1Ex(X), P = p+ β∆t2Exx(X)M−1p.(55)

The preprocessing, which involves transforming given initial (x, p) values into (X,P )
values for the numerical method, requires the solution of a nonlinear system of equa-
tions for X. The postprocessing (to get output values (x, p)) requires only that a
linear system be solved for p. If we make this change of variables in the Hamiltonians
(33) and (34), we get for the E form

H̃ =
1
2
pTM−1p+ E(x)

+ ∆t2
((

1
12

+ β

)
pTM−1ExxM

−1p−
(

1
24

+
1
2
α+ β

)
(Ex)TM−1Ex

)
+O(∆t4)

and for the M form

H̃ =
1
2
pTM−1p+ E(x)

+ ∆t2
((
− 1

24
+ β

)
pTM−1ExxM

−1p−
(
− 1

12
+

1
2
α+ β

)
(Ex)TM−1Ex

)
+O(∆t4).

Note that in both cases the effect of nonzero β is to transfer weight from one error
term to the other. Thus, we can choose to eliminate the first or second error term [32]
or to make their coefficients equal. Making the coefficients equal implies

β = −1
4

(
α+

1
4

)
(E form),(56)

β = −1
4

(
α− 1

4

)
(M form).(57)

In either case, we then have

H̃ =
1
2
pTM−1p+ E(x)

+
1
4

(
1
12
− α

)
∆t2

(
(M−1p)TExxM

−1p+ (Ex)TM−1Ex
)

+O(∆t4)
(58)
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and

d

dt
H = −1

4

(
1
12
− α

)
∆t2

(
(M−1p)TExxxM

−1pM−1p
)

+O(∆t4).(59)

When the potential is quadratic, the above quantity is O(∆t4). Thus with the appro-
priate interpretation of the computed values, all methods very nearly conserve energy
in the harmonic case. By comparison, without the processing we have for the M form

d

dt
H = − 1

24
∆t2

((
M−1p)TExxx(M−1p,M−1p

))
+
(

1
4
− α
)

∆t2
(
(M−1p)TExxM

−1Ex
)

+O(∆t4).

If we want to apply this transformation in practice, the preprocessing can be
approximated by

X ≈ x− β∆t2M−1Ex(x), P = p+ β∆t2Exx(X)M−1p,(60)

and the postprocessing by

x = X + β∆t2M−1Ex(X), p ≈ P − β∆t2Exx(X)M−1P.(61)

This transformation can also be approximated by formulas based on the following
equations, whose detailed derivation is given in [33]:

Xn = xn + β∆t2(xn+1 − 2xn + xn−1) +O(∆t4),

Pn = pn − β∆t2(pn+1 − 2pn + pn−1) +O(∆t4),
(62)

with associated postprocessing formulas

xn = Xn − β∆t2(Xn+1 − 2Xn +Xn−1) +O(∆t4),

pn = Pn + β∆t2(Pn+1 − 2Pn + Pn−1) +O(∆t4).
(63)

These approximations are not symplectic, but that is not necessary for our purpose.
Symplecticness helps only if we iterate a map many times, such as we do when we
propagate the (encoded) numerical solution.

7. Numerical experiments. The orders of accuracy claimed in this paper have
been confirmed for all schemes by numerical experiments (data not shown). To test
these ideas of pre- and postprocessing, energetic fluctuations, stability, and accuracy,
we performed numerical experiments on a butane molecule with the united-atom
representation.3 The potential energy is composed of bond-length stretching, bond-
angle bending, and dihedral angle rotation terms. Model and potential details are
given in [6].

In the united-atom representation, the fastest period of the motion is much longer
than that of the atomic-level model because hydrogen atoms are not explicitly mod-
eled (instead, groups of CH2 and CH3 are considered). An estimate for the highest-
frequency timescale for each model can be obtained by the square root of the ratio
of characteristic units for mass (m) and the force constant (K) for bond stretching,

3Butane has the chemical formula C4H10, and is described by the linkage CH3 − CH2
−CH2 − CH3.
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FIG. 2. Total energy of a butane molecule from velocity Verlet (α = 0) dynamics, as obtained by
both unprocessed and processed 1E form. Open circles represent the energy evolution from 1E-form
dynamics, and filled squares represent the processed 1E-form values with β = − 1

16 . The timestep
used is 10 fs. The exact value of the energy is its initial value, approximately 6.61.

i.e., τ ≈ 2π
√
m/K. For an all-atom model, M = 1 amu (for hydrogen) and K ≈ 400

kcal/mol/Å2 and thus τ ≈ 15 fs. For a united-atom model, M = 12 amu (for CH2)
and K ≈ 80 kcal/mol/Å2, so the period τ is about 120 fs. Thus in the latter model,
τ is about eight times greater.

Below we use ∆t = 10 fs unless stated otherwise (in all-atom models, typically
∆t = 1 fs is used). All reported results are obtained from simulations of a single
molecule started from a local minimum and zero initial velocity. To heat the system
to room temperature (300 K), a 20-ps Langevin dynamics simulation is performed [6].
At this point, we switch to Newtonian dynamics.

For α = 0 (Verlet method), we plot in Figure 2 the total energy of the butane
molecule during the dynamics. The curve with filled squares corresponds to the
processed 1E form and that of open circles to the unprocessed 1E form (the velocity
Verlet). As predicted, the energy fluctuation in the processed trajectory is much
smaller than that of the unprocessed one. Specifically, the rms (root-mean-square)
deviation from the mean energy of the processed is about 1

10 of that of the unprocessed
method.

Next, we compare in Figure 3 the evolution of the dihedral angle of butane4 as a
function of time for both the processed and unprocessed versions of the E and M meth-
ods for α = 0 (Verlet), and α = 1

2 (LIM2). In each case, forms 1E, 1M, 1E∗, and 1M∗

are given; superscript * denotes processed. It is evident that the processed trajectories
are closer to one another for a specific α. This is expected because the processing can
make the effective Hamiltonians of forms 1E and 1M the same (up to fourth order in
∆t). It ensures that α can be our sole classification parameter for different methods.

Figure 4 shows dihedral angle trajectories for various processed methods in the E
form with ∆t = 5, 10, 20, 30 fs, with several choices of α: 0 (Verlet), 1

12 (Numerov–
Cowell), 1

4 −
1
π2 ,

1
4 (midpoint), 1

2 (LIM2). The value from the trajectory integrated
with ∆t = 1 fs is shown as a thick solid line for reference. The methods with α=0

4A dihedral angle defines the rotation of two atom groups about the bond connecting them.
Thus, for butane, τ defines the rotation about the central C-C bond.
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FIG. 3. The evolution of butane’s dihedral angle τ for Verlet and LIM2 integrators. Parts (a)
and (b) show τ trajectories obtained for α = 0 (Verlet) and α = 1

2 (LIM2), respectively, for form
1E (open circles), processed 1E (filled circles), form 1M (open squares), and processed 1M (filled
square). Parts (c) and (d) are essentially the same as (a) and (b) except that the ordinates in (c)
and (d) show the angular difference between the (a) or (b) values and corresponding 1M values. The
angular difference are plotted here to make the differences among different forms clear. A timestep
of 10 fs is used. The solid line in plots (a) and (b) represents the angle evolution obtained at a
timestep of 1 fs.

and 1
12 are unstable at ∆t = 30 fs, so only curves with ∆t = 5, 10, and 20 fs are

shown. Among these methods, Numerov–Cowell has the highest accuracy; in theory,
it is fourth-order accurate with the pre- and postprocessing. It is also notable that
the trajectories with different timesteps are close to the reference solution within the
1.5 ps simulation length. Other methods produce close trajectories to the solid curve
only when ∆t ≤ 5 fs, except for the case α = 1

4 −
1
π2 which is nearly as accurate for

10 fs also. Beyond 10 fs, it is difficult to pinpoint “better” or “worse” performance.

8. Conclusion. We have unified and defined a group of implicit integrators,
differentiated by a single parameter α. One explicit method is also included in the
group as a reference and as a special case of the defining parameter (α = 0). The
basic framework of our integrators is given by the force expression in (10). We showed
that α = 0 corresponds to the Störmer–Verlet method, α = 1

12 to Numerov–Cowell,
α = 1

4 to implicit-midpoint (and trapezoid rule), and α = 1
2 to LIM2 of Zhang and

Schlick. It was also shown that these methods are symplectic. Some of the methods
have more than one common form, and six forms are presented in section 2.

From analysis of the harmonic oscillator case (linear forces), we showed that
schemes with α < 1

4 impose a condition on the timestep for stability. By deriving ex-
plicit propagation formulas for positions and velocities, we showed that the frequency
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FIG. 4. Time evolution of the dihedral angle of butane molecule from processed 1E-form dy-
namics. For each method (or α value), trajectories are shown for timesteps in the 1 fs (solid line)
to 30 fs range. For α = 0 (Verlet) and α = 1

12 (Cowell–Numerov), trajectories at 30 fs timesteps
are unstable and not shown.

of the oscillator is distorted due to the discretization and that the effective frequency
( θ

∆t ) is timestep, frequency, and method dependent. We illustrated this by showing
the dependence of the rotation (θ) on the timestep, frequency, and method. A special
value of α = 1

4 −
1
π2 was suggested to make this rotation as close as possible to the

target value (see Figure 1).
Also, the E and M forms are essentially equivalent in the sense that there exists

a canonical transformation that transfers the effective Hamiltonian of either form to
a common form (accurate up to fourth order in timestep). This property of different
forms allows us to apply special pre- and postprocesses to make the processed E and
M forms have close trajectories (see Figure 3).

In our analysis, an α-dependent expression for β is used (see (56), (57)). This
choice yields a fourth-order accurate (in ∆t) scheme for α = 1

12 where the second-order
term in (58) vanishes and reveals the intrinsic fourth-order accuracy of the Numerov–
Cowell method. Furthermore, from (59), better energy conservation can be obtained
for the harmonic case. This improves energy conservation even for nonlinear systems
since the error from the harmonic part can be reduced significantly.

What might be the practical implications of this work for biomolecular dynam-
ics? The interpretation of discretization errors as a modification to the Hamiltonian
method implies that observed energy fluctuations represent a sampling of the pertur-
bation term of the Hamiltonian. Thus for symplectic integrators significance can be
attached to the size of the fluctuations. And this remains true if a more favorable
and “truer” interpretation of the numerical solution is obtained by means of process-
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ing based on a symplectic transformation. Our analyses and experiments have not
resolved the question of whether it is worthwhile to use conventional integration for-
mulas other than leapfrog–Verlet. Further investigation is needed into questions of
efficient implementation and resonances before conclusions can be reached.
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