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Abstract: Presented in the context of classical molecular mechanics and dynamics are multilevel summation methods
for the fast calculation of energies/forces for pairwise interactions, which are based on the hierarchical interpolation of
interaction potentials on multiple grids. The concepts and details underlying multigrid interpolation are described. For
integration of molecular dynamics the use of different time steps for different interactions allows longer time steps for
many of the interactions, and this can be combined with multiple grids in space. Comparison is made to the fast
multipole method, and evidence is presented suggesting that for molecular simulations multigrid methods may be
superior to the fast multipole method and other tree methods.
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Introduction

Calculation of pairwise interactions for a set of N particles is the
computational bottleneck for many physical problems. In particu-
lar, this is the case for simulations of biological molecules, which
require enormous numbers of such calculations. Not surprisingly,
there is a great need for faster N-body calculations using algo-
rithms suitable for large-scale parallelism. It is well known that
inverse-square-law forces between pairs of N particles can be
calculated to a given accuracy in a time proportional to N or N log
N by methods such as the fast multipole method1 and multipole
generalizations of other tree algorithms like those in refs. 2 and 3.
One readily available implementation, the parallel program DP-
MTA,4,5 together with the parallel molecular dynamics program
NAMD,6 has been used for a number of biomolecular studies.7

However, there is a large constant multiplying the N in the running
time. This can be partly compensated for by the use of multiple
time stepping, in which longer time steps are used for the full
electrostatics calculation. It is tempting to reduce the cost further
by computing the force with errors that are comparable to those
introduced by the temporal discretization (which can be estimated
by the method of modified equations8–10). The problem with this
is that the “quality” of such force evaluation errors can be far
worse than discretization errors introduced by a good integrator.
Indeed, experience11,12 indicates a need to use many terms of a
multipole expansion to avoid energy drift. Expensive high-order
approximations would not be necessary, it seems, if the force
approximations were continuous as functions of particle positions.
Investigated here are alternative algorithms that calculate contin-

uous forces in linear time using hierarchical interpolation of inter-
action potentials on multiple grids.

The idea of using multiple grids, introduced a decade ago for
computing integral transforms,13 is less well known than tree
methods. These “multigrid” methods are not iterative. At a fun-
damental level such methods share with tree methods a linear �(N)
efficiency based on a separation of spatial scales.14 Both types of
methods pool the effects of neighboring particles to approximate
their interactions with more distant particles. They differ in how
they separate spatial scales: tree methods hierarchically separate
particle pairs into near pairs and far pairs, whereas multigrid
methods hierarchically separate the force potential into a short-
range part plus a smooth part.15 The multigrid method approxi-
mates the smooth part of the potential between each particle using
basis functions defined on a fine grid. The calculation is thus
reduced to calculating interactions between pairs of points on the
fine grid, and this is approximated on a coarser grid in the same
manner that the irregular particle level calculation was approxi-
mated on the fine grid. The ideas underlying multigrid interpola-
tion are described in greater detail in the next section.

Only recently has the multigrid method been applied to the
N-body problem. The one published implementation16 is for par-
ticle monopoles and dipoles in two dimensions, and gives timing
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comparisons against the direct calculation. Given in this article in
the Method Details section are the mathematical details of an
implementation of the multigrid method for nonperiodic boundary
conditions in three dimensions. (Modification for periodic bound-
ary conditions is in progress.) Also, recently, a more traditional
multigrid solver has been applied to a Poisson equation formula-
tion for calculating the smooth part of the interactions,12 motivated
by the desire to run more efficiently than FFT-based methods such
as PME (particle mesh Ewald)17 on massively parallel computers.

The Comparison to Tree Methods section compares multigrid
to the fast multipole method. Tests on a 20,544-atom model of
water show that for the same accuracy the multigrid is twice as fast
as the DPMTA implementation of the fast multipole method. Even
greater speedups are expected in the context of dynamics for two
reasons. First, multigrid methods calculate a continuously differ-
entiable approximation to the potential energy function, whereas
tree methods calculate a discontinuous approximation, which ne-
cessitates the use of smaller error tolerances. Second, only the
multigrid method provides a smoothly varying partitioning of
forces into different length scales, which can be exploited by
multiple time stepping. Other advantages of the multigrid method
are its relative simplicity and its applicability to general potentials,
for example, van der Waals. On the other hand, the proposed
method has not been demonstrated to be as efficient for high
accuracy as the fast multipole method, especially recent versions
such as in ref 18.

The Algorithm Details section discusses algorithm details, and
then we give additional experimental analysis of accuracy.

Basic Idea

The electrostatic energy due to a collection of N charged atoms can
be expressed as

Uel�r�1, r�2, . . . , r�N� �
1

2 �
i�1

N �
j���i�

qiqj

4��0�r�j � r�i�
, (1)

where r�i is position, qi is (partial) charge, �0 is the dielectric
constant, and �(i) is the set of exclusions for atom i. These
exclusions consist of i itself and typically other atoms j that are
present in the same covalent energy terms as i (bond lengths,
angles, dihedrals, and improper dihedrals). The forces are obtained
as gradients

F� i
el � ��iU

el,

and this is also the case for the approximations presented in this
article. The fast methods presented can also be applied to the
product of the Hessian of Uel with a 3N-dimensional vector.

A variety of boundary conditions are used in molecular dynam-
ics, for example, the set of atoms may be simply in a vacuum, they
may be harmonically restrained to a sphere to prevent drift, or
(most commonly) they may be periodically replicated in all three
directions. In the case of a simple vacuum it may be appropriate to
use an adaptive algorithm designed for nonuniform distributions,

but not in the other two cases. Treated in this article is the
nonadaptive nonperiodic case.

The qualities required of the approximation depend on the type
of calculation being performed, whether it is a Monte Carlo cal-
culation, energy minimization, or molecular dynamics. The last of
these commonly involves the integration of Newton’s Law of
Motion

mi

d2

dt2 r�i�t� � ��iU�r�1�t�, r�2�t�, . . . , r�N�t��, i � 1, 2, . . . , N,

where mi is the mass of the ith atom and the potential energy U is
a mostly empirical sum of contributions representing O(N2) non-
bonded electrostatic and van der Waals interactions as well as
O(N) interactions due to covalent bonding:

U�· · ·� � bonded energies �
1

2 �
i�1

N �
j���i�

Uij
nonbonded��r�j � r�i��.

The integration becomes analytically trivial if forces are ap-
proximated by a sequence of impulses:

mi

d2

dt2 r�i�t� � �
n

�t��t � n�t����iU�· · ·��.

This is the popular leapfrog/Störmer/Verlet scheme, each new
step consisting of half a kick followed by a drift followed by half
a kick.

There are various criteria by which one might judge the merit
of an approximation Ũel � Uel. The most obvious is the smallness
of error(s) measured in one way or another. Also of interest in
some contexts is the continuity of Ũel and its derivatives. In
particular, if the force is computed as the gradient of a discontin-
uous potential (and we do not compute impulses at these discon-
tinuities), the force will not be conservative. It is believed that
continuity of the forces is sufficient to prevent energy drift when
used with a symplectic integrator such as the leapfrog scheme.
Also of interest in molecular dynamics is conservation of linear
momentum and of angular momentum.

Three elements are essential to a multilevel N-body solver:

1. Separation of length scales. Pairwise interactions are separated
into short-range interactions, which are calculated directly, and
slowly varying interactions. For multigrid N-body solvers this
is achieved by splitting pair potentials into short-range and
slowly varying parts.

2. Coarsening. The slowly varying part of the energy is approx-
imated with fewer terms. If this is done only for the source of
an interaction, the result is an �(N log N) Barnes–Hut type of
algorithm. If this is done for both source and destination, the
result is an �(N) Greengard–Rokhlin type of algorithm. For
multigrid N-body solvers, the approximation (or interpolation)
uses gridded basis functions.

3. Hierarchy. Steps 1 and 2 are applied recursively. (An alterna-
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tive to the multilevel approach is to use an FFT to do the
gridded calculation.)

Separation of Length Scales

We begin with a splitting

1

r
� �1

r
� ga�r�� � ga�r�

where ga(r) is defined so that r�1 � ga(r) vanishes for r beyond
some cutoff a � 0 and ga(	x2 
 y2 
 z2) and its first few
derivatives are slowly varying everywhere (see Fig. 1).

The slowly varying part of the energy (with coefficient omitted)
is

�
i�1

N �
j�1

N

qiqjga��r�j � r�i��.

The other part can be calculated in �(N) time.

Coarsening

First, the softened potential is approximated as a function of the
source r��:

ga��r� � r���� � �
k

ga��r� � r�h,k���k�r���

where r�h,k are points on a 3D grid �h with grid size h and �k are
nodal basis functions with “local support,” for example, piecewise
polynomials that are identically zero on all but a small number of
grid cells. A 1D piecewise cubic basis function is illustrated in
Figure 2. Second, the coefficients of the basis functions are ap-
proximated as functions of the destination r�:

ga��r� � r�h,k�� � �
m

ga��r�h,m � r�h,k���m�r��.

The end result is

ga��r� � r���� � �
k

�
m

�m�r�� ga��r�h,m � r�h,k���k�r���

—a separable approximation  function(r�) � function(r��).
This approximation is used for the slowly varying part of the

energy:

�
i�1

N �
j�1

N

qiqjga��r�j � r�i�� � �
i�1

N �
j�1

N

qiqj �
k

�
m

�m�r�j�ga��r�h,m � r�h,k��

	 �k�r�i� � �
k

�
m

ga��r�h,m � r�h,k�� �
i�1

N

qi�k�r�i� �
j�1

N

qj�m�r�j�.

Define “grid point charges”

qh,k � �
i�1

N

qi�k�r�i�, (2)

and the slowly varying part of the energy becomes

�
k

�
m

qh,mqh,kga��r�h,k � r�h,m��.

Thus,

�
particle pairs

reduced to �
grid point pairs

.

Hierarchy

What about ¥k ¥m qh,mqh,kga(�r�h,k � r�h,m�)? Just as we approx-
imate a softened 1/r on a grid with spacing h, we approximate a
further softened ga(r) on a coarser grid with spacing 2h. For this
purpose we do a splitting

ga�r� � � ga�r� � g2a�r�� � g2a�r�,

in which the first part ga(r) � g2a(r) vanishes for r beyond 2a. (A
better approximation for g2a(r) than for ga(r) is possible, because
g2a(r) is needed only at values r � �r�h,k � r�h,m�.)

The repeated use of this idea yields an �(N) multilevel algo-
rithm. Each level above the particle level has a grid, and at the grid
points of each grid is computed a charge array and then a potential
array. The potential for grid point r�h,k on the finest grid �h is ¥m

qh,mga(�r�h,k � r�h,m�). (An �(N log N) algorithm instead calcu-
lates potential values only at particle positions but does the calcu-
lation using the entire hierarchy of charges.)

Figure 2. A piecewise cubic basis function.

Figure 1. (a) 1/r and the softened 1/r, (b) 1/r � (the softened 1/r).
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Method Details

The next two subsections present possible smoothings and basis
functions, and then we compare them on the basis of numerical
experiments. The optimal choice of grid size and cutoff is deter-
mined analytically after that. The details of an efficient �(N)
implementation are then deferred until the last subsection.

Smoothings

For the smoothed potential we use

ga�r� � �
1

a �15

8
�

5

4 � r

a�
2

�
3

8 � r

a�
4� , r 
 a,

1

r
, r � a.

This is C2 continuous and enables second-order accuracy for
the smoothed force (an �((h/a)2) approximation error relative to
the maximum smoothed force over all r) if the gridded approxi-
mation scheme is at least second-order accurate. The quadratic part
of the function above is based on the Taylor expansion of �(s) �
s�1/ 2 about s � a2 where s � r2. In other words, to obtain ga(r)
substitute r2 for s in

��s�

� � ��a2� � �s � a2����a2� �
�s � a2�2

2
���a2�, s 
 a2,

s�1/ 2, s � a2.

This type of approximation is used also by ref. 19. We experiment
with two other smoothings that include one less and one more term
in the Taylor expansion. The formula for a first-order Taylor
expansion is

ga�r� � �
1

a �3

2
�

1

2 � r

a�
2� , r 
 a,

1

r
, r � a.

That for a third-order expansion is

ga�r�

� �
1

a �35

16
�

35

16 � r

a�
2

�
21

16 � r

a�
4

�
5

16 � r

a�
6� , r 
 a,

1

r
, r � a.

All three smoothings are plotted for a � 1 in Figure 3.

Basis Functions

Here, the key idea is to blend two quadratic interpolants to obtain
a C1 piecewise cubic interpolation function. Let Qk( x) be the

quadratic polynomial interpolating a function at three consecutive
grid points xk�1, xk, xk
1. The blend is given by

xk
1 � x

xk
1 � xk
Qk� x� �

x � xk

xk
1 � xk
Qk
1� x�, xk 
 x 
 xk
1.

This defines a piecewise cubic interpolant, and it is easily
verified that this is C1 continuous. (An alternative derivation of this
interpolant is to use cubic Hermite interpolation with first deriva-
tives approximated by centered differences.20)

Taking this approach, we obtain the 3D nodal basis functions

�k� x, y, z� � ��� x � xh,k�/h���� y � yh,k�/h���� z � zh,k�/h�

where

��� � � �1 � ����1 � �� �
3

2
2� , �� 
 1,

�
1

2
��� � 1��2 � ���2, 1 
 �� 
 2,

0, �� � 2.

This gives an exact approximation for quadratic but not for cubic
and higher degree polynomials.

We also test other possibilities for a basis function whose
general form is given as follows:
Proposition 1 Let �() be a C1 piecewise cubic with knots �2,
�1, 0, 1, 2, and support [�2, 2] such that f̃�(x) � f�(x) for
quadratic polynomials f(x) where

f̃� x� � �
k

f� xk���x � xk

h �
with xk � x0 
 kh. Then

��� � �
1

2
�

1

4
2 � ��1

3
�

3

2
2 � ��3� , �� 
 1,

�2 � ���2�1

4
� ��1

6
�

1

3
���� , 1 
 �� 
 2,

0, �� � 2,

where � is an arbitrary constant.
The proof is given in Appendix A.

Figure 3. Smoothed potentials: dash–dash C1, solid C2, dash–dot C3.
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Approximation using these general basis functions is not inter-
polation except for the original choice � � 3

2
. For this case, f̃( x) �

f( x) for quadratic f( x); otherwise, the approximation is exact only
for linear polynomials f( x). If a C2 approximation is wanted, this
can be attained for � � 1

2
, which gives a cubic B-spline basis

function.
The other option we consider is a C1 piecewise quintic nodal

basis function with support �3 
  
 3:

���

� �
�1 � 2��2 � ����1

2
�

1

4
�� �

5

12
2� , �� 
 1,

���� � 1��2 � ����3 � ����1

6
�

3

8
�� �

5

24
2�, 1 
 �� 
 2,

1

24
��� � 1���� � 2��3 � ���2�4 � ���, 2 
 �� 
 3,

0, �� � 3.

This is obtained using the same technique as that given for the
piecewise cubic.

Choice of Smoothing and of Basis Function

We investigate empirically the relative efficiency of different com-
binations of smoothing and basis functions. In particular, we study
the variation of force and energy error and of running time.

The multigrid method was implemented and tested on a 60 Å
cube of 6848 water molecules, which is a total of 20,544 atoms.
All interactions are nonbonded. Interactions between atoms of the

same molecule are not excluded. The water positions are a result
of molecular dynamics equilibration.

Four different performance measures are specified: average
force error, maximum force error, energy error, and total CPU
time. The force errors are relative to the average force normalized
by the square root of the atom’s mass. More specifically, the
maximum force error is given by

max FE �
maximi

�1/ 2�F� i
el � F� i,d

el �
N�1 ¥i mi

�1/ 2�F� i,d
el �

,

the average force error is given by

avg FE �
N�1 ¥i mi

�1/ 2�F� i
el � F� i,d

el �
N�1 ¥i mi

�1/ 2�F� i,d
el �

,

and the energy error is given by

EE �
�Uel � Ud

el�
�Ud

el� ,

where F� i,d
el and Ud

el denote, respectively, the force and energy
obtained from a direct calculation.

The tests in this section all use a cutoff radius a of 8 Å and a
total of three levels (particles and two grids). Presented in Tables
1–3 are values for h: grid size (Å), avg FE: average force error
(%), max FE: maximum force error (%), EE: energy error (%), and
time: CPU time (number in parenthesis is for the smooth part).

From the tabulated data, we plot CPU time vs. maximum force
error for different combinations of basis and smoothing functions.

Table 1. C1 Piecewise Cubic Interpolation.

C3 Smoothing

h Avg FE Max FE EE Time

4.36 0.41 2.36 0.0100 2.16 (0.63)
2.77 0.20 0.86 0.0026 3.43 (1.90)
2.03 0.15 0.62 0.0016 8.89 (7.37)

C2 Smoothing

h Avg FE Max FE EE Time

4.36 0.29 1.32 0.0013 2.12 (0.62)
2.77 0.17 0.67 0.0024 3.37 (1.87)
2.03 0.14 0.58 0.0017 8.72 (7.22)

C1 Smoothing

h Avg FE Max FE EE Time

4.36 0.50 1.87 0.0060 2.12 (0.64)
2.77 0.45 1.75 0.0043 3.40 (1.92)
2.03 0.42 1.43 0.0060 8.94 (7.46)

Table 2. C2 Cubic B-Spline Approximation.

C3 Smoothing

h Avg FE Max FE EE Time

4.36 0.80 4.10 0.036 2.24 (0.72)
2.77 0.50 2.67 0.022 3.70 (2.18)
2.03 0.32 1.76 0.013 9.56 (8.04)

C2 Smoothing

h Avg FE Max FE EE Time

4.36 0.57 2.19 0.012 2.22 (0.72)
2.77 0.34 1.37 0.0044 3.65 (2.14)
2.03 0.23 0.96 0.0012 9.39 (7.89)

C1 Smoothing

h Avg FE Max FE EE Time

4.36 0.60 2.08 0.0038 2.22 (0.74)
2.77 0.51 1.76 0.0050 3.70 (2.23)
2.03 0.47 1.62 0.0044 9.57 (8.09)
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Figure 4 shows the performance of various smoothing functions
for a given nodal basis function. Figure 5 shows experiments with
different basis functions while keeping the smoothing function
fixed.

From the tables and figures, we conclude that for lower accu-
racy the best choice is C1 piecewise cubic interpolation with a C2

splitting and for higher accuracy the best choice is C1 piecewise
quintic interpolation with a C3 splitting.

Choice of Grid Size and Cutoff

The optimal choice of grid size and cutoff can be determined
analytically under realistic assumptions.

We begin by determining the cost of the computation assuming
that calculating a pairwise interaction costs one unit. For an � � �
� � box the particle density is h*

�3 where h* � N�1/3�. The
value h* is a measure of the distance between nearest neighbors.
The cost of calculating the short range particle–particle interac-
tions is

level 0 cost �
1

2
N �

4

3
�a3 � h*

�3.

The cost of calculating interactions between grid points on the
finest grid is

level 1 cost � � �
1

2 ��

h�
3

�
4

3
��2a�3 � h�3

where � is the ratio of the cost of calculating a pairwise interaction
between grid points to that for particles. The cost for each coarser
level is 1

8
as great as the previous level, so the total cost of grid

point interactions is obtained by multiplying the level 1 cost by
1 
 1

8

 1

64

 . . . �8

7
. Neglecting the cost of transferring charges

and potentials between levels, we get

cost �
2

3
�N� a

h*
�3�1 �

64

7
��h*

h �
6

�. (3)

If we use as a rule of thumb that the two parts of the cost should
be balanced, this leads to the choice

h � �64

7
�� 1/6

h*,

Table 3. C1 Piecewise Quintic Interpolation.

C3 Smoothing

h Avg FE Max FE EE Time

5.08 0.35 1.68 0.0079 4.08 (2.36)
3.05 0.12 0.62 0.0015 6.11 (4.45)
2.18 0.06 0.37 0.0003 13.06 (11.42)

C2 Smoothing

h Avg FE Max FE EE Time

5.08 0.26 1.26 0.0025 4.05 (2.36)
3.05 0.14 0.56 0.0030 6.06 (4.41)
2.18 0.11 0.41 0.0026 12.88 (11.27)

C1 Smoothing

h Avg FE Max FE EE Time

5.08 0.50 1.87 0.0052 3.99 (2.33)
3.05 0.44 1.67 0.0037 6.00 (4.38)
2.18 0.41 1.50 0.0025 12.77 (11.18)

Figure 4. (a) C1 piecewise cubic interpolation, (b) C2 cubic B-spline
approximation, and (c) C1 piecewise quintic interpolation with differ-
ent choices of splitting functions.

Figure 5. (a) C3, (b) C2, and (c) C1 splitting functions with different
choices of basis functions.
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which is independent of the cutoff a. Hence, the cutoff a is the
parameter to vary to obtain the desired accuracy.

A more detailed analysis yields almost the same result. For an
approximation of order p to the smooth part of the force, the
relative error is proportional to (h/a)p. The ratio of the smooth part
of the force to the total force is proportional to a�2/h*

�2. Hence, we
can approximate the relative error as Cphph*

2a�p�2 for some constant
Cp. Equating this to an error tolerance � gives the constraint

Cph
ph*

2a�p�2 � �.

Minimizing the cost in eq. (3) subject to this constraint gives

h � �1 �
4

p�
1/6�64

7
�� 1/6

h* and a � �hph*
2

Cp

� �
1/� p
2�

.

Comparison to Tree Methods

The fast multipole method is briefly sketched, and the multigrid
method is compared to it both empirically and theoretically. Most
of the discussion applies also to other tree methods (e.g., refs.
21–24). (The method in ref. 22 is classified as a tree method
because of the way that it separates length scales).

The separation of length scales in tree methods is obtained from
a decomposition of the domain into cells. A pairwise potential
between two particles is regarded as slowly varying if the two
parent cells are “well separated.” Otherwise, the pairwise potential
is short range, and it is computed directly. In a nutshell, tree
methods partition particle pairs (i, j) and equate “slowly varying”
with long-range; whereas, multigrid methods partition the poten-
tial 1/r and equate “slowly varying” with smoothed.

To explain the coarsening of long-range interactions, consider
the approximation of the potential �r� � r����1 at r� due to unit
charge at r�� where source and destination points are contained in
cells that are well separated. Let c�� be the center of the cell
containing r��, as illustrated by Figure 6, and Taylor expand �r� �
r����1 about r�� � c��. If we exploit the harmonicity of the function,
we get

�r� � r����1 � �
p�0

� �
q��p

p

Cp
q�r� � c���Sp

q�r�� � c���

where the pth degree term of the outer summation is a linear
combination of the 2p 
 1 spherical harmonics Sp

q of degree p.
This is to be contrasted with a general Taylor expansion, which has
1

2
( p 
 1)( p 
 2) terms of degree p. For example, a seventh-

degree expansion in spherical harmonics has only 64 terms instead
of the 120 terms of a general Taylor expansion. To complete the
coarsening, the coefficients Cp

q(r� � c��) are Taylor expanded about
r� � c� , where c� is the center of the cell containing r�. Thus a
separable approximation for the slowly varying part of the energy
is created. Although tree methods can exploit harmonicity to
economize on the number of terms, multigrid methods can exploit
the higher accuracy of interpolation to obtain the same effect.

We compare our multigrid implementation against DPMTA
using the same test problem as described earlier. The timing results
have been obtained on a 360-MHz Sun Ultra-60, with each pro-
gram compiled using “cc -fast -xtarget�ultra.” The
multigrid experiments show results for the C1 piecewise cubic
basis function paired with the C2 splitting function and for the C1

piecewise quintic basis function paired with the C3 splitting func-
tion. Three levels are used with the finest-level grid sizes as
described earlier, h � 2.77 and h � 3.05, respectively, for these
two multigrid choices. As suggested by the theoretical analysis
earlier, we change only the cutoff value as a control of accuracy.

The DPMTA experiments show results for two different values
of the theta parameter, 0.5 and 0.75. The theta parameter is the
separation ratio for the multipole acceptance criterion, which
should be between 0 and 1 with optimal values in the range 0.5 to
0.75. A lower value gives better accuracy but requires greater CPU
time. Four levels are used, where the number of levels refers to the
number of times that the spatial domain is subdivided. A value of
four levels should be sufficient for systems up to 10,000 particles.
The FFT flag is set to “yes,” which improves performance sub-
stantially if eight or more multipole terms are used. Accuracy in
this case is controlled by changing the number of multipole terms.

The experimental results shown in Figures 7 and 8 graph the
relationship between the percent relative maximum force error
(our strictest measure of accuracy) and CPU time for the two
multigrid and two DPMTA alternatives detailed above. Figure 7
reveals that the performance of multigrid is superior to DPMTA
for lower accuracy solutions, appropriate for molecular dynamics.
The performance of DPMTA is significantly better than multigrid
for higher accuracy. Smoother splittings and higher degree basis
functions should make multigrid more competitive for higher
accuracies. Figure 8 extends these plots to compare the conver-
gence of both methods. As expected, whenever the multigrid

Figure 6. Source in its cell and destination.

Figure 7. The cutoff a for MG takes values 5, 8, . . . , 20 and the
number of terms for DPMTA takes values 4, 8, . . . , 20.
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cutoff value is large enough to encompass all pairs, the plot levels
off so that the error drops to zero for larger cutoff values without
additionally increasing the CPU time. The DPMTA plots show the
effect of roundoff error as the number of multipole terms increases.

On balance, multigrid methods are simpler than tree methods,
because they avoid the complicated operations required for spher-
ical harmonics as well as the interaction lists required for cells. A
simpler algorithm makes for easier incorporation of the force
evaluation code into the dynamics code, thus eliminating the
modularity overhead.

The multigrid method is more general than the fast multipole
method and, for example, can be easily applied to give faster van
der Waals force evaluations (to a limited extent).

Neither linear nor angular momentum can be expected to be
conserved by multigrid solvers. The reason is that they use a gridding
of space, which perturbs the value of the potential energy function so
that it does not retain the property of being invariant under a rigid
body translation and/or rotation of particle positions. It is expected
that the momenta will fluctuate but not drift. The fast multipole
method conserves linear momentum but not angular momentum.

An artifact arising from the fact that the approximate potential
energy is not invariant under a uniform translation of all particles
is the possibility of a “self” force. (This can be avoided by
choosing the smoothed potential and the basis functions so that
interpolation of the smoothed potential is exact, and by choosing a
cutoff a that is long enough compared to the support of the basis
functions.) We believe that this is no more serious than the lack of
conservation of linear momentum. Also, a simulation study based
on the first 170 particles (of 20,544 in total) reveals that the
maximum normalized self force has a magnitude of 0.0441, which
is quite small compared to the normalized average force (71.4)
over all particles. Sandak16 corrects for self-force by computing it
and then subtracting it off.

As stated in the introduction of this article, tree methods cal-
culate potential energies that are discontinuous as functions of
particle positions, which results in unstable dynamics unless these
discontinuities are made very small by calculating very accurate
forces. The multigrid method, on the other hand, can easily be
implemented so that it computes continuously varying forces, thus
permitting stable time stepping for less accurate, and hence, less
expensive force values.

An experiment was performed to demonstrate the destabilizing
effect of the fast multipole method on dynamics, while a somewhat
less accurate multigrid approximation maintains stability. The test
problem is a set of 10,002 equilibrated water molecules harmon-
ically restrained to a 42.5 Å-radius sphere. The water is based on
the TIP3P model25 without electrostatic cutoffs and with flexibility
incorporated by adding bond stretching and angle bending har-
monic terms (cf. ref. 26). The fast multipole method computed by
DPMTA used an eight-term multipole expansion with theta � 0.75
for a reasonably good electrostatic force approximation, whereas
the multigrid method used a cutoff of 8 Å and a grid size of 2.5 Å,
which provided a less accurate approximation than computed by
the fast multipole method. Figure 9 shows plots of the energy vs.
time for 1000 fs for a step size �t � 1 fs with the energy sampled
every step. There is, during the first picosecond, a very noticeable
upward energy drift for the fast multipole method indicating in-
stability, vs. no discernible drift in energy for the more cheaply
computed multigrid method over a duration of 100 picoseconds
(not shown here). Experiments from ref. 11 show that DPMTA
requires at least 12 multipole terms for stable dynamics, so the
timing comparisons presented in Figure 7 indicate that multigrid is
actually three to four times faster than DPMTA for stable dynam-
ics. The testing was done with a molecular dynamics program
written by the third author, which is compatible with NAMD but
limited in features to facilitate algorithm testing.

Appropriate time steps for different interactions range from
�t � 0.8 fs for bond length stretching to more than 80 fs for
electrostatics interactions (except that numerical stability require-
ments typically limit the largest time step to a smaller value than
80 fs). Unnecessary evaluations of slowly varying interactions can
be avoided by multiple time stepping (MTS), which separates the
interactions into different time scales and evaluates them at dif-
ferent time increments. The popular (and a good) way to do this is
known as Verlet-I27 or r-RESPA.28 Given a partitioning U � Ufast


 Uslow, the approximation

mi

d2

dt2 r�i�t� � �
n

�t��t � n�t����iU
fast�· · ·��

� �
n

�t��t � n�t����iU
slow�· · ·��

Figure 8. The cutoff a for MG takes values 5, 8, . . . , 32, 35, 40, . . . ,
120 and the number of terms for DPMTA takes values 4, 8, . . . , 32.

Figure 9. Energy for DPMTA and for multigrid with step size 1 fs.
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allows the more numerous (long-range) slow forces to be com-
puted less frequently.

The use of MTS with a time step fixed for each interaction is
inadequate for nonbonded interactions because the time scale can
vary greatly depending on the interparticle distance r. We want to
vary the time step for such an interaction depending on the dis-
tance between two atoms. Therefore, for each nonbonded interac-
tion Uij(�r�j � r�i�), we introduce an artificial splitting28,29

Uij�r� � Uij
fast�r� � Uij

slow�r�

such that Uij
fast(r) vanishes for r � rcut and Uij

slow(r) is “slow” for
all r. So Uij

slow(r) never requires a small time step. The effect of
this is to permit a large time step whenever r exceeds the cutoff.

More than two different time steps can be used. With three
different time steps the force values computed over one long time
step are as follows:

one half of Fslow �
1

2
Fmedium �

1

4
Ffast,

1

4
Ffast,

1

2
Fmedium �

1

4
Ffast,

1

4
Ffast,

one half of Fslow �
1

2
Fmedium �

1

4
Ffast.

These combinations are efficiently computed by a multigrid solver.
For stable multiple time stepping it is necessary that each part

of the force be continuous as a function of particle positions.
Multigrid methods are easily implemented so that they continu-
ously vary the partitioning of forces, but this is not so true for tree
methods.

Algorithm Details

The double sum in eq. (1) can be formulated as the vector–matrix–
vector product

Uel �
1

8��0
qTGq, Gij � � �r�j � r�i��1, i, j included

0, otherwise

where q is an array of the particle charges and G is a symmetric
matrix of values of the Green’s function for the Laplacian except
for the zeros due to exclusions. The special geometrical properties
of G make it possible to do an approximate fast matrix–vector
product:

Gq � potentials.

We write

G � Ĝ � G̃

where

G̃ij � ga��r�j � r�i��, Ĝij � � fa��r�j � r�i��, j � ��i�,
�ga��r�j � r�i��, j � ��i�,

and

fa�r� �
1

r
� ga�r�.

The matrix Ĝ is sparse with a number of nonzeros proportional to
a3N. The matrix G̃ has slowly varying elements, and this property
can be exploited to get a fast approximation to G̃q.

As described earlier, the approximation to G̃ is obtained by
approximating the potential ga(�r�� � r��) on the grid �h. The result
is

G � Ĝ � I*hGhI*
h,

where

Gh,km � ga��r�h,m � r�h,k��, I*h,ik � �k�r�i�, I*
h � �I*h�

T.

The matrix I*
h is sparse but Gh is dense. This is depicted in

Figure 10.
The computation proceeds as follows:

qh �
def

I*
hq �cf. eq. �2��,

eh �
def

Ghqh,

Uel �
1

2 �
i

�
j���i�

qiqjfa��r�j � r�i��

�
1

2 �
i

�
j���i�

qiqjga��r�j � r�i�� �
1

2
qh

Teh,

F� i
el � qi �

j���i�

qj

f�a��r�j � r�i��
�r�j � r�i�

�r�j � r�i�

Figure 10. Matrices for a two-level approximation.
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� qi �
j���i�

qj

g�a��r�j � r�i��
�r�j � r�i�

�r�j � r�i�

� qi �
k

eh,k��k�r�i�, i � 1, 2, . . . , N.

In the expressions above, note that for each of Uel and F� i
el the

contribution from the smooth part of the potential (the last term)
depends on eh. Hence, it is important to do the computation eh �
Ghqh efficiently. We discuss below how this is done. Also note
that it is more efficient not actually to compute the product Gq at
the particle level.

The direct calculation

1

2 �
i

�
j���i�

qiqjfa��r�j � r�i�� and qi �
j���i�

qj

f�a��r�j � r�i��
�r�j � r�i�

�r�j � r�i�,

i � 1, 2, . . . , N

can be done in �(N) time using the grid cell 
 linked list
technique (ref. 15, Chapter 8), termed geometric hashing in ref. 30.
The idea is to partition the computational box into an array of grid
cells each containing a subset of the particles. This is implemented
in a computer program as an array of pointers to linked lists of
particle indices, one linked list for each cell. This makes it easy to
avoid processing pairs of particles in grid cells separated by a
distance of at least a.

The matrix Gh has special structure that can be exploited, for
example, by using a 3D FFT to form the product eh � Ghqh.31 An
alternative fast way to multiply by Gh is to use a multilevel
method. Just as we approximate the smooth part of G on a grid
with spacing h, we approximate the smooth part of Gh on a coarser
grid with spacing 2h. The hierarchical structure of the multigrid
algorithm lends itself better to a parallel implementation than a
method based on the FFT and accommodates a multiplicity of time
steps for the longer range electrostatics.

It is convenient to change notation and use superscripts 1, 2,
3, . . . to denote quantities on grids �1 � �h, �2 � �2h, �3 �
�4h, . . . . Based on the splitting ga(r) � ( ga(r) � g2a(r)) 

g2a(r), write

G1 � Ĝ1 � G̃1

where Ĝ1 is sparse and G̃1 is sufficiently smooth that it can be
approximated on a coarser grid �2. The result is then

G1 � Ĝ1 � I2
1G2I1

2,

where the matrix I1
2 is sparse but G2 is dense. The matrix I1

2 is a
tabulation of grid �2 basis functions on grid �1. This is repeated
at higher levels in going from a finer grid to a coarser grid:

Gl � Ĝl � Il
1
l Gl
1Il

l
1, l � 1, 2, . . . , L � 1,

where L is the number of grid levels. Thus, a dense matrix of Nl
2

elements is reduced to one of Nl
1
2 � 1

64
Nl

2 elements. The actual
computation is as follows:

ql
1 � Il
l
1ql l � 1, 2, . . . , L � 1,

eL � GLqL,

el � Ĝlql � Il
1
l el
1, l � L � 1, L � 2, . . . , 1.

This can be represented as a V-cycle with “rungs” as shown in
Figure 11. In this diagram each circle represents a vector of values,
each horizontal arrow represents multiplication by a sparse matrix,
each diagonal arrow represents multiplication by a very sparse
matrix, and the juncture of two arrows is the sum of two vectors.

The choice of the piecewise cubic basis function proposed
earlier leads to 4 � 4 � 4 stencils for transfer operations. More
generally, the size of the stencils is proportional to the order p of
the approximation, and the cost of applying I*

1 and I*1 is O( p3N).
The coefficients of operators Il

l
1 and Il
1
l are independent of l

and can be precomputed. Also, the cost of applying these is only
O( pN).

Because

g2a�	�2ih�2 � �2jh�2 � �2kh�2� �
1

2
ga�	�ih�2 � � jh�2 � �kh�2�,

Table 4. Smooth Part Only: C1 Piecewise Cubic With C2 Smoothing.

h Avg FE Max FE EE

4.36 32.2 148.7 0.014
3.39 21.9 84.9 0.0034
2.77 18.5 78.2 0.0018
2.03 15.7 63.7 0.0075
1.33 9.8 32.7 0.0008
0.98 5.7 23.2 0.0022

Table 5. Accuracy of Simple Cutoff With Various Radii vs. Multigrid.

a Avg FE Max FE EE

8 4.04 14.23 1.98
10 3.16 11.90 1.58
12 2.63 9.53 2.81
8 (MG) 0.17 0.67 0.0024

Figure 11. Multiple grid V-cycle.
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the Ĝl are independent of l except for a scale factor and can be
precomputed; in particular, one can tabulate ga(h	i2 
 j2 
 k2)
for all required values of i2 
 j2 
 k2. Also, the coefficients of
GL can be precomputed.

It is of interest to consider how the mesh is generated for each
level of computation. Let � be the length of a cube containing all
particles. Suppose that hd is the desired grid size for the finest grid.
Choose the finest grid to have M1 � �/hd 
 2 subdivisions in
each direction where M1 � 4 is a modest integer times some
power of 2. Then, the grid spacing for the finest grid is chosen to
be h � �/(M1 � 2). The reason for subtracting two is that the
computational box is one grid spacing bigger in each direction than
the original cube—if piecewise cubic basis functions are used for
interpolation. (We would subtract 4 for quintics.) Then, for each
coarser level l 
 1, Ml
1 � 1

2
Ml 
 2, and hl
1 � 2hl. If, for

example, there are 24 subdivisions and three levels, then the
number of subdivisions for each level are 24, 14, and 9, respec-
tively. Because of the padding of coarser grids, it is counterpro-
ductive to go to too coarse a grid. Also, an O(N) operation count
requires only that ML � O(M1

1/ 2).
Additional details are given in Appendix B.

Additional Experimental Analysis

Here we examine the (interpolation) errors in the smooth part of
the forces relative not to the total forces but only to the smooth
parts. We use C1 piecewise cubic interpolation with C2 splitting.
The cutoff radius is 7.5 Å, and the depth of the grid hierarchy is 1.
The results are in Table 4. The error is larger than would be
expected from the previous results (and indicates a need for a more
penetrating error analysis).

These unexpectedly poor results suggest a comparison with the
use of simple cutoffs. Table 5 shows the accuracy of simple cutoff
for cutoff radii 8, 10, and 12 Å vs. multigrid. The grid size is fixed
at 2.77. It is evident that we do considerably better in terms of
accuracy using the multigrid method.

For further insight, we also include results pertaining to the
smooth part of the potential for the case where all atoms are
positively charged (i.e., oxygen atoms carry a positive charge).
The numbers in Table 6 indicate a much better error convergence.
The convergence here is second-order for forces and fourth-order
for energy. The discrepancy between the two sets of results is
attributed to massive cancellation.
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Appendix A: Proof of the Proposition

Choose h � 1 and grid points . . . , � 3

2
, � 1

2
, 1

2
, 3

2
, . . . , and

consider the interval � 1

2

 x 


1

2
:

f̃� x� � f��
3

2���x �
3

2� � f��
1

2���x �
1

2�
� f�1

2���x �
1

2� � f�3

2���x �
3

2�. (4)

We can also express this as a linear combination of averaged
centered differences of f( x) at x � 0 of orders 0, 1, 2, 3. Exactness
of the first derivative for quadratic f( x) implies

f̃�� x� � � f�1

2� � f�� �1

2�� �
1

2
x� f�3

2� � f�1

2� � f��
1

2�
� f��

3

2�� � Q�x�� f�3

2� � 3f�1

2� � 3f��
1

2� � f��
3

2�� (5)

for some arbitrary quadratic Q( x). For this to be part of a contin-
uous interpolant, the contribution of f(� 3

2
) to f̃( x) should vanish

at x � 1

2
and that of f (3

2
) should vanish at x � � 1

2
:

�1

2
x � Q� x��� x�1/ 2 � 0, � 1

2
x � Q� x���

x��1/ 2

� 0.

This implies

Q� x� �
1

4
� ��x2 �

1

4�
for some arbitrary constant �. Comparing eqs. (4) and (5) gives

��� x� � �
1

2
x � 1 � �� x � 1�� x � 2�, �2 
 x 
 �1,

�
1

2
x � 3�x�x � 1�, �1 
 x 
 0,

�
1

2
x � 3�x�x � 1�, 0 
 x 
 1,

1

2
x � 1 � ��x � 1��x � 2�, 1 
 x 
 2,

0, otherwise.

Integrating this yields the stated result.

Table 6. Simulation Results for Uniformly Charged Particles.

h Avg FE Max FE EE

4.36 0.77 5.09 0.012
3.39 0.43 3.10 0.008
2.77 0.30 2.02 0.002
2.03 0.16 1.09 0.0007
1.33 0.06 0.45 0.0001
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Appendix B: Additional Algorithmic Details

We revert back to the h subscripting and give details for the
operations for the grid �2h:

q2h � Ih
2hqh,

e2h � Ĝ2hq2h � contribution from �4h,

eh � Ĝhqh � I2h
h e2h.

Operations on coarser grids are just the same except for a smaller
range of indices.

The transfer of charge from �h to �2h is computed as

q2h,k � ��I2h
h �Tqh�k � �

m

I2h,mk
h qh,m � �

m

�2h,k�r�h,m�qh,m.

Assume for notational convenience that grid indices k are
triplets k � (kx, ky, kz) (so that summations over k are triple
summations) and that r�2h,k � r�h,2k. Expressing m � 2k 
 �, we get

q2h,k � �
�

�2h,k�r�2h,k � h��qh,2k
�

� �
�x

��1

2
�x� �

�y

��1

2
�y� �

�z

��1

2
�z�qh,2kx
�x,2ky
�y,2kz
�z,

where the indices �x, �y, and �z each range from �1

2
p � 1 to

1

2
p 
 1.

The direct calculation on �2h is

�Ĝ2hq2h�k � �
m

Ĝ2h,kmq2h,m

� �
�

Ĝ2h,k,k
�q2h,k
�

� �
�

� g2a��2h��� � g4a��2h����q2h,k
�

� �
�

�1

2
ga�h���� �

1

4
ga�h

2
�����q2h,k
�,

where the summation for � ranges over triplets � such that ��� �
2a/h.

Finally, the transfer of potential from �2h to �h is given by

�I2h
h e2h�k � �

m

I2h,km
h e2h,m � �

m

�2h,m�r�h,k�e2h,m.

This is most easily implemented as an outer loop over each �2h

index m and an inner loop on k:

add �2h,m�r�h,k�e2h,m to eh,k for all r�h,k “near” r�2h,m.

Changing to k � 2m 
 � this becomes

add �2h,m�r�2h,m � h��e2h,m to eh,2m
� for all “small” �.

The term that we add simplifies to

��1

2
�x���1

2
�y���1

2
�z�e2h,m

where the indices �x, �y, �z each range from � 1

2
p � 1 to

1

2
p 
 1.
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