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THE SECOND-ORDER BACKWARD DIFFERENTIATION FORMULA 
IS UNCONDITIONALLY ZERO-STABLE * 

Robert D. SKEEL 
Department of Computer Science, Univetsity of Minois at Urbana-Champaign, Utbanq IL 61801, U.S.A. 

Previous studies of the stability of the second-order backward differentiation formula have concluded that 
stability is possible only if restrictions are placed on the stepsize ratios, for example, limiting the ratio to some 
value less than 1 + fi. However, actual implementations of the BDFs differ from the usual theoretical models of 
such methods; in particular, practical codes use scaled derivatives (e.g. EPISODE) or backward differences to 
represent current information about the solution. The representation makes no difference to truncation errors, 
but it has an important effect of the propagation of roundoff errors md of errors in the solution of the implicit 
equations. In this paper it is shown that the divided difference implementation of the variable coefficient 
(variable stepsize extension of the) second-order BDF is zero-stable for unrestricted stepsize ratios. 

1. Statement of result 

The second-order backward differentiation formula (BDF) is of great practical importance 
due to its simplicity, its efficiency, and its excellent stability properties for stiff ODES and PDEs. 
Efficiency, for stiff problems especially, requires the use of variable stepsize. There are two 
well-known ways of extending the BDFs to variable stepsize that have been used in ODE 
software. The natural variable coefficient extension used in EPISODE is known to have superior 
stability properties to the interpolatory Gear-Nordsieck fixed coefficient extension used in 
LSODE. This paper shows that the variable coefficient BDF of order two is, in fact, O-stable 
regardless of how the stepsize is varied. In Section 3 it is noted that the fixed coefficient BDF is 
only conditionally O-stable. 

Let Y(X), a < x < b, be the solution to 

Y’(X) =f (x9 Y(X)) 

which satisfies 

u(a) = rl, 

where it is assumed that f( x, y) is Lipschitz continuous in y with Lipschitz constant L. For 
simplicity we assume that the numerical solution is computed by one step of backward Euler 
with infinitesimal stepsize followed by N - 1 steps of second-order BDF. (This is equivalent to 
one step of trapezoid followed by N-steps of second-order BDF. However, the former point of 
view is notationally more convenient and slightly closer to what is done in practice.) Hence the 
mesh is 

a=x -1 =xg<x1<x2< l =. <x,=b 
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with stepsizes 

!rn := X,-X,+ 

The variable coefficient extension of the second-order BDF is given by 

Y, - (I+ &hJh,-r)Yn-r+ Wn/h#t-1)Yn-2 = 0 - &)V(%I~ YJ 

for n >, 2 where 

P” :=h,,/(h,-i +2h,), n>,l, 

and p0 := 0. Previous studies of O-stability (Gear and Tu [51p Gear [4], Zlatev [7]) have considered 
the effect of small perturbations to the above equation. As a consequence, O-stability is possible 
only if restrictions are placed on the stepsize ratio, for example, the restriction 

h”/h n_1\( constant<l+& 

given by Crouzeix and Lisbona [2], is sufficient to ensure O-stability. 
Most practical implementations use, instead of the second-order difference equation (l), a pair 

of first-order difference equations; for example, EPISODE uses scaled derivatives and others use 
backward differences. For the purpose of discussion let us assume the use of divided differences. 
Letting z,, be the computed value of ( y,, - y,,_ I)/hn, we have 

Yo=rl+609 %I =fbcb Yd f %9 

and for n = 1, 2, . . . , N 

Y" =yn-1 +h,z,+S,, z,= PA-~ + (1 - ~n)fb,,, Y,,) + (l- ~,)6,' 

where a,,, 6: are perturbations due to roundoff errors and the solution of the implicit equations. 
The factor 1 - p,, in front of s,’ is for convenience; and because 

UP&r, 

it should cause no concern. It is expected that both S, and s,’ are O(U) where u is the unit 
roundoff error. It is not to be expected that s,’ is 0( u/h,, \, and that is what makes real methods 
superior to theoretical models of methods. 

The result that we prove compares the computed solution y, to the analytical solution y( x,), 
which satisfies 

Y[%* x,-J = PnY[x,+ xn-21 + u- PnMXnr Y(X?J - (1 -Phil 

where the truncation error (per unit step) 

T, = h&r,, + h,-,)Y[x,, x,, x,,+, x,,-J, n 2 1, 

and 7. = 0. This is bounded by $h&_ 
In Section 2 it is proved that 

times a bound on the norm of the third derivative of y(x). 

IYL-YbJl < o(D,, + (x, - a)Di) eoL(xn-a), (2) 
where 
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L3= ( $h_L)-l. 

Mote that the factor o is essentially 1, and thus the result is quantitatively very satisfactory. 
After the proof in Section 2 we conclude in Section 3 with a discussion of possible extensions 

of this result. 

2. Proof of result 

If we define 

and 

4 :=yn -YbnL en := 2, -Y[Xn, x,-J 9 

gIY :=fbn* Yn) -f(Xnr Yb,)), 

then after subtracting the appropriate equations we get 

do=&, eO=gO+eO, 

and 

&=d,.-r+h,e,,+S,, (3) 
e, = &I%-1 + 0 - P,)& + (1 - &)E, (4) 

where 

% :=6:-t-7,. 

Solving (4) for e, we get 

e, = i (l - Pj)Pj+I l ’ ’ P,(gj + &j). 
j=O 

Putting this into (3) and solving for d, gives a double summation for gj + &j plus a single 
summation for si. Introducing a term for h, = 0 into the double summation and interchanging 
the order of summation gives 

d,= ~ hj,(gj+Ei) + ~ ~j 
j=O j=O 

where 

h in 
:= i (l - Pj)Pj+* l l l pihi. 

i=j 

Using II gj II G L Ildj II, we get 

lId,ll~ n~lhj~Llldjll+(l-Pn)hnLlldnll+ ihjnDri+Dns 
j=O j=O 
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By interchanging the order of summation and using p0 = 0, it can be shown that 
n 

Ch in =x -a. n 

By separately 

II + 4i 
j-0 

where 

M, = o( 0, + (x, - a)D,$ 

(5) 

By induction on n we can show 

11 d,, II< (1+ ho&) l l - (I+ h,_,,&)M,. 
(one must use the fact that h, and M,, are nondecreasing functions of n.) Then we have 

11 d, 11 G M, exp( ho,&) l l - exp( h,_,,,oL) d M,, exp 

and (2) follows from a second application of the identity (5). 

3. Extensions of the result 

The fixed coefficient extension of the second order BDF is given by Skeel[6] to be 

2, = f(~h,-r)z,-r + 4/(x,* YJ + 3(0,-r - wk-,)fk+ Y~-A 

where again zn denotes an approximation to the divided difference of the solution. Clearly, an 
unlimited number of consecutive steps with stepsize ratios exceeding 3 would lead to instability. 
At the same time it would seem that keeping the stepsize ratios limited to some value less than 3 
would suffice for stability. This is much more generous than the restriction to a value less than fi 
obtained for the ordinate form of the method, and it helps to explain the success of codes such as 
LS0DE. 

For the higher order variable coefficient BDFs we cannot expect unconditional O-stability, but 
we can expect that conditions cited in the literature can be relaxed. For example, if we consider a 
long sequence of steps with a fixed stepsize ratio, then a divided difference implementation of the 
third order BDF is O-stable provided that h,/h, _ 1 < 3.44. . . . This is far less restrictive than the 
value 1.6180. . . quoted by Dahlquist [3] for theoretical implementations. 

For the test problem y’ = X y it is observed by Brayton and Conley [l] that the principal root 
of the characteristic polynomial exceeds 1 in modulus for some h,_,X in the left half-plane 
unless h, = h,+ and hence some form of variable-stepsize A-stability does net seem possible 
except under severe restrictions. This situation is unchanged for the divided difference implemen- 
tation because the principal root of the characteristic polynomial is unaffected by the implemen- 
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tation. Because the roots of the characteristic polynomial vary from one step to the next, one 
cannot draw precise conclusions about stability from a study of these roots. Nonetheless, it is 
interesting to note that for the divided difference implementation these roots are of modulus at 
most one as long as 

IArg( 4) 1 f arctan A 81” 

A rigorous analysis is needed to confirm that the second-order BDF is unconditionally A( cu)-sta- 
ble for some QI close to 81”. Note that for stiff problems it may no longer be valid to assume that 
s,’ = O(u), but a more appropriate scaling of the perturbation may be indicated. 
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