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THE SECOND-ORDER BACKWARD DIFFERENTIATICN FORMULA
IS UNCONDITIONALLY ZERO-STABLE *

Robert D. SKEEL
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.

Previous studies of the stability of the second-order backward differentiation formula have concluded that
stability is possible only if restrictions are placed on the stepsize ratios, for example, limiting the ratio to some
value less than 1+ \/2_ . However, actual implementations of the BDFs differ from the usual theoretical models of
such methods; in particular, practical codes use scaled derivatives (e.g. EPISODE) or backward differences to
represent current information about the solution. The representation makes no difference to truncation errors,
but it has an important effect of the propagation of roundoff errors and of errors in the solution of the implicit
equations. In this paper it is shown that the divided difference implementation of the variable coefficient
(variable stepsize extension of the) second-order BDF is zero-stable for unrestricted stepsize ratios.

1. Statement of result

The second-order backward differentiation formula (BDF) is of great practical importance
due to its simplicity, its efficiency, and its excellent stability properties for stiff ODEs and PDEs.
Efficiency, for stiff problems especially, requires the use of variable stepsize. There are two
well-known ways of extending the BDFs to variable stepsize that have been used in ODE
software. The natural variable coefficient extension used in EPISODE is known to have superior
stability properties to the interpolatory Gear—Nordsieck fixed coefficient extension used in
LSODE. This paper shows that the variable coefficient BDF of order two is, in fact, O-stable
regardless of how the stepsize is varied. In Section 3 it is noted that the fixed coefficient BDF is
only conditionally 0-stable.

Let y(x), a < x < b, be the solution to

Y (x)=£(x, y(x))
which satisfies

y(a)=mn,
where it is assumed that f(x, y) is Lipschitz continuous in y with Lipschitz constant L. For
simplicity we assume that the numerical solution is computed by one step of backward Euler
with infinitesimal stepsize followed by N — 1 steps of second-order BDF. (This is equivalent to
one step of trapezoid followed by N-steps of second-order BDF. However, the former point of
view is notationally more convenient and slightly closer to what is done in practice.) Hence the
mesh is

Aa=X_1=X,<X,<X;< ++- <xy=b
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with stepsizes
h,=x,—x,_;.
The variable coefficient extension of the second-order BDF is given by
Vo= L+ o0, R, 1) Y0y + (030 B 1) Yuer = (1= p)H, f(X,, 3,) (1)
for n > 2 where
Pn=h,/(h,_,+2h,), n>1,
and p, = 0. Previous studies of 0-stability (Gear and Tu [5], Gear [4), Zlatev [7]) have considered

the effect of small perturbations to the above equation. As a consequence, 0-stability is possible
only if restrictions are placed on the stepsize ratio, for example, the restriction

h,/h,_,< constant <1+ V2,

given by Crouzeix and Lisbona [2], is sufficient to ensure O-stability.

Most practical implementations use, instead of the second-order difference equation (1), a pair
of first-order difference equations; for example, EPISODE uses scaled derivatives and others use
backward differences. For the purpose of discussion let us assume the use of divided differences.
Letting z, be the computed value of ( y, — y,_,)/h,, we have

Yo=mn+8;, zo=f(x9, ¥5) + &,
and forn=1,2,....N

yn=yn—l +hnzn+8n’ zn=pnzn—-l + (1 —pn)f(xn' yn) + (1 —pn)sr:

where §,, §, are perturbations due to roundoff errors and the solution of the implicit equations.
The factor 1 — p, in front of 8, is for convenience; and because

1
0<p,<3,

it should cause no concern. It is expected that both §, and 8§/ are O(u) where u is the unit

roundoff error. It is not to be expected that &, is O(u/h, >, and that is what makes real methods
superior to theoretical models of methods.

The result that we prove compares the computed solution Y. to the analytical solution y(x,),
which satisfies

y[xn‘ xn—l] = pny[xn—l’ xn—2] + (1 - pn)f(xn’ y(xn)) - (1 - pn)'rn
where the truncation error (per unit step)
T=h,(h,+h,_)ylx,, X, X,_1, x,_5], n>1,

and 7, = 0. This is bounded by 142, times a bound on the norm of the third derivative of y(x).
In Section 2 it is proved that

lyn_y(x”)|<w(D"+(x,,—-a)D,:) ewL(x,.—a), (2)
where
J
D,:= max || 3 §,{, D, = max " T+ 8 "’
osj<n|l 2o o<j<n ’ ’
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Note that the factor w is essentially 1, and thus the result is quantitatively very satisfactory.
After the proof in Section 2 we conclude in Section 3 with a discussion of possible extensions

of this result.

2. Prooi of resuii
If we define
dn :=yn_y(xn)’ en :=zn-y[xn! xn-—‘l]’
and
8. :=f(xn’ yn) _f(xn’ y(xn))’

then after subtracting the appropriate equations we get

do =&, €o=8o T &.
and
d,=d,_,+he,+8§, (3)
e, =pe,_1+(1-p,)8,+(1-p,)e, (4)
where

vo— ’
e, =8 +m,.

Solving (4) for e, we get
= Z (1 - pj)pj+l T pn(gj+ Ej)'
j=0

Putting this into (3) and solving for d, gives a double summation for g; + ¢, plus a single
summation for §,. Introducing a term for 4, =0 into the double summation and interchanging
the order of summatlon gives

d,= Z hjn(gj+£j) + Z 8]
j=0 Jj=0

where
= Z (1 - pj)pj+l e p,-h,-.
i=j

Using || ;1| < L || d; ||, we get

n—1

ld, < ¥ h,Lid,||+(1—-p,)h,Lld,|+ Zh D, +D,.

Jj=0 Jj=0
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By interchanging the order of summation and using p, = 0, it can be shown that

VN =y —g (5)
“ Ilj" A" “ \T7
j=0
Rv senaratelv considering b <h_ . and A > h__, it can be argued that
APy SVpRIaseiy WV o n=X"Tn-1 n n-1 S
—_ - 21
L= Py )y S 3 max
Putting this together we get
n—1
na n_. U T d na as
N8alls L, Nj,WL || 4; || T M,
=0
where
Al —.dD 1w _ 2\D')
JVI"—W‘U"T\A" u;u";

By induction on n we can show
" dn " < (1 + hOn“,L) te (1 + hn—l.n“’L)Mn'
(One must use the fact that h,, and M, are nondecreasing functions of n.) Then we have
ld, Il <M, exp(hg,wL)--- exp(h,_, ,0L) <M, exp‘ Z h,wL ’
\j=0
and (2) follows from a second application of the identity (5).
3

Extensions

The fixed coefficient extensicn of the second order BDF is given by Skeel [6] to be

(hﬁr/h“ i)zﬁ—1+ %Jf(xil--' Jvﬁ)+ é((hﬁ-} —h )/hﬁ—l)-lf(xii—}' yﬁ—'l)’
whara agnin » danmatag an oA - 1. . facam £ shan anlistinnm MManeley an
1IviC agaiil <, ULV anl apps 1 UIC >Uluuvil. Licailliy, ail

would suffice for stability. This is much more generous than the restriction to a value less than V3
obtained for the ordinate form of the method, and it helps to explain the success of codes such as

For the higher order vanable coefficient BDFs we cannot expect unconditionali 0-stability, but
wo ran avnant thaot canditiane Aitad 1 tha Ltasantiiea nnm ban malawvad DA avasesmla 3£ wra anmoidae o
v vail VAPWWL LIAL VULIULLIVIID VIWLU 11 LIV LI alul e Lall UL 1Ciaacu. 1ot CAalllPlC, 11 WU CUIDDIUVL a
long sequence o st ps with a fixed stepsize ratio, then a divided difference imp emen-atmn of the

€ a 'renc

thjrd order BDF O-stable provided that h /h,,_, <3.44.... This is far
value 1.6180... quoted by Dahlquist [3] for theoretical nmplementatxons.
For the test problem y’ = Ay it is observed by Brayton and Conley [1] that the principal root
of the charaetenstlc polynormal exceeds 1 in modulus for some h,, ;A in the left half-plane
form of variable-stepsize A-smmmy uGes not seem possmle
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R.D. Skeel / Second-order backward differentiation 149

tation. Because the roots of the characteristic polynomial vary from one step to the next, one
cannot draw precise conclusions about stability from a study of these roots. Nonetheless, it is
interesting to note that for the divided difference implementation these roots are of modulus at
most one as long as

|Arg(—A) | < arctan($v15 ) = 81°

A rigorous analysis is needed to confirm that the second-order BDF is unconditionally A(a)-sta-
ble for some « close to 81°. Note that for stiff problems it may no longer be valid to assume that
8, = O(u), but a more appropriate scaling of the perturbation may be indicated.
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