
A separable shadow Hamiltonian hybrid Monte Carlo method
Christopher R. Sweet,1 Scott S. Hampton,2 Robert D. Skeel,3 and Jesús A. Izaguirre1,a�

1Department of Computer Science and Engineering, University of Notre Dame, Notre Dame,
Indiana 46556, USA
2Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA
3Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, USA

�Received 5 May 2009; accepted 2 October 2009; published online 3 November 2009�

Hybrid Monte Carlo �HMC� is a rigorous sampling method that uses molecular dynamics �MD� as
a global Monte Carlo move. The acceptance rate of HMC decays exponentially with system size.
The shadow hybrid Monte Carlo �SHMC� was previously introduced to reduce this performance
degradation by sampling instead from the shadow Hamiltonian defined for MD when using a
symplectic integrator. SHMC’s performance is limited by the need to generate momenta for the MD
step from a nonseparable shadow Hamiltonian. We introduce the separable shadow Hamiltonian
hybrid Monte Carlo �S2HMC� method based on a formulation of the leapfrog/Verlet integrator that
corresponds to a separable shadow Hamiltonian, which allows efficient generation of momenta.
S2HMC gives the acceptance rate of a fourth order integrator at the cost of a second-order
integrator. Through numerical experiments we show that S2HMC consistently gives a speedup
greater than two over HMC for systems with more than 4000 atoms for the same variance. By
comparison, SHMC gave a maximum speedup of only 1.6 over HMC. S2HMC has the additional
advantage of not requiring any user parameters beyond those of HMC. S2HMC is available in the
program PROTOMOL 2.1. A Python version, adequate for didactic purposes, is also in MDL
�http://mdlab.sourceforge.net/s2hmc�. © 2009 American Institute of Physics.
�doi:10.1063/1.3253687�

I. INTRODUCTION

Molecular dynamics �MD� is an important basic sam-
pling method for configuration space of complex systems. It
has the ability to make global moves of molecular systems in
a straightforward manner. However, MD introduces a sys-
tematic time step discretization error into computed aver-
ages. Hybrid Monte Carlo �HMC� �Ref. 1� is a rigorous sam-
pling method that employs MD as a global Monte Carlo
�MC� move, followed by a Metropolis acceptance criterion.
HMC has applications in physics ranging from lattice gauge
theory to biomolecular modeling.2 HMC requires using a
time reversible and volume preserving integrator in the MD
move to preserve detailed balance.3 The most popular MD
integrator used in HMC is the Verlet or leapfrog integrator.
This method is a second-order accurate, time reversible, and
symplectic integrator, which provides volume preservation
even in the case of nonconservative forces.

Unfortunately, error in the MD step causes the accep-
tance rate of HMC to decay exponentially for a fixed MD
time step with increasing system size N.4,5 In practice the
number of steps scales as O�N1/2� because one typically re-
duces the step size with increasing N. This paper introduces
the separable shadow Hamiltonian hybrid Monte Carlo
�S2HMC� method. The goal of S2HMC is to improve the
acceptance rate of HMC at negligible cost, and thus to ben-
efit from the improved sampling of configuration space to
accelerate convergence of averages computed with the
method. S2HMC differs from HMC in three ways. First,

S2HMC uses a processed velocity Verlet �VV� integrator in-
stead of Verlet. The goal of a processing integrator is to
increase the effective order of accuracy by using preprocess-
ing and postprocessing steps.6,7 The rationale for increasing
the effective order of accuracy is that a more accurate inte-
grator has better acceptance rate in HMC. The second differ-
ence thus is that S2HMC uses a modified potential energy
function, which is conserved to O��t4� by the processed
method instead of just O��t2� by the unprocessed method.
The third difference is that S2HMC requires a reweighting
step to compensate for modification of the potential energy.

The idea of using a modified potential energy function of
higher accuracy and reweighting to improve the acceptance
rate of HMC was introduced with the shadow hybrid Monte
Carlo �SHMC� method.8 However, SHMC uses nonseparable
Hamiltonians that require relatively expensive generation of
momenta and a tuning parameter to balance the cost of re-
jection of momenta and positions. S2HMC requires no pa-
rameters beyond HMC’s and is more scalable than SHMC,
as numerical results show.

Generalizations of SHMC have been introduced: in par-
ticular, the targeted SHMC �TSHMC� �Ref. 9� and the gen-
eralized SHMC �GSHMC�10–12 methods allow momenta to
be partially refreshed to improve the probability of accepting
momenta from nonseparable Hamiltonians. These protocols
also allow more flexibility in the simulation protocol, for
instance, by allowing weak stochastic rather than strong
stochastic perturbations in the momenta resampling. The
approach in S2HMC could be combined with these generali-
zations.a�Electronic mail: izaguirr@nd.edu.

THE JOURNAL OF CHEMICAL PHYSICS 131, 174106 �2009�

0021-9606/2009/131�17�/174106/7/$25.00 © 2009 American Institute of Physics131, 174106-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.3253687
http://dx.doi.org/10.1063/1.3253687

The paper proceeds as follows. Section II describes the
algorithm so that it can be easily implemented. Sections II
and III can be omitted by readers interested in the practical
use of the method. Section III gives the theoretical justifica-
tion. In particular, it is shown that our choice of processed
Verlet gives a symplectic and reversible integrator and that
S2HMC preserves detailed balance. It is also shown that the
modified potential energy is conserved to fourth order. The
effect of the reweighting step is also analyzed. Section IV
describes the theoretical efficiency of S2HMC. Section V
shows numerical tests to illustrate the speedup over HMC.
The main reason for speedup is the increased sampling of
configuration space due to the higher acceptance rate. Fi-
nally, Section VI is a discussion of the results presented.

S2HMC is an elegant method for improving sampling
using HMC. It is theoretically justified and preserves detailed
balance. It can help overcome bias and energy drift of MD.
By using modified potential energies one can get an
asymptotic O�N1/4� speedup in sampling over HMC.8

S2HMC can be potentially very helpful in applications that
require rigorous sampling for large complex systems.

II. SEPARABLE SHADOW HYBRID MONTE CARLO

We describe HMC and S2HMC with enough detail so
that the method can be implemented. A C++ implementation
of S2HMC is provided in the program PROTOMOL 2.1.13 Here
we use a Python implementation for easier understanding.
The reader interested in implementation details will find
them in this section and can safely skip the next two sec-
tions. HMC uses a MD step followed by a Metropolis MC
step. Let H�x ,p�= 1

2pTM−1p+U�x� be the Hamiltonian or to-
tal energy of an isolated system. Here x and p are vectors
with 3N elements with all positions and momenta for N at-
oms, U is the potential energy, and 1

2pTM−1p is the kinetic
energy. M is a diagonal matrix with the mass for each atom
repeated three times in the diagonal. This is a separable
Hamiltonian and the most common form used in MD. New-
ton’s equations of motion can be written as a Hamiltonian
system of ordinary differential equations �ODEs�,

dx

dt
= M−1p,

dp

dt
= − �xU�x� � f�x� , �1�

where f�x�, the negative of the gradient of U, is a conserva-
tive force. These equations of motion are typically dis-
cretized with the VV/leapfrog,14 which is a second-order ac-
curate, reversible, and symplectic integrator. A step of VV
can be written as follows:

�1� Half kick: Let pn+1/2=pn+ ��t /2�f�xn�,
�2� Drift: Let xn+1=xn+�tM−1pn+1/2,
�3� Half kick: Let pn+1=pn+1/2+ ��t /2�f�xn+1�,

where the subscript represents the discretization step and �t
is the time step. To help implement all the methods presented
here we describe the code written in Python using the librar-
ies implemented in the Molecular Dynamics Lab �MDL,
http://mdlab.sourceforge.net�.15 Enough code is presented to
make this discussion concrete. For instance, the half kick
step of VV is implemented in line 11 of code listing 1. The

code uses Numpy arrays to represent the 3N vectors phys-
.positions, phys.velocities, forces.force, and phys.invmasses,
corresponding to x ,p , f and the diagonal matrix M−1, respec-
tively. These are Python arrays optimized for numerical com-
putation, where multiplication is performed elementwise.
Note that in the VV implementation, two half kicks are com-
bined into a single step for efficiency in line 18 of code
listing 1.

HMC requires using a time reversible and volume pre-
serving integrator in the MD move to preserve detailed
balance.3 We can thus describe HMC using VV as follows.
The main HMC function is in code listing 2. HMC calls the
Metropolis function �code listing 3� and VelocityVerlet �code
listing 1�.

Code Listing 1: Velocity Verlet Function
def velocityVerlet�phys, forces, steps, timestep, fg�:

preconditions:
phys.positions, phys.velocities, forces.force, phys.invmasses
are numpy arrays with 3 elements for each atom;
these arrays must be set before calling velocityVerlet
timestep is the MD timestep in femtoseconds
fg has force field data; see below fg.calculateForces
postconditions:
phys.positions, phys.velocities, and forces are updated
after ‘steps’ number of MD steps
phys.velocities+ =0.5� timestep�phys.invmasses� forces.force
phys.positions+ =timestep�phys.velocities
fg.calculateForces computes forces using phys.positions
and leaves the result in forces.force
fg.calculateForces�phys, forces�
step=1
while �step� =steps�:

phys.velocities+ =timestep�phys.invmasses� forces.force
phys.positions+ =timestep�phys.velocities
fg.calculateForces�phys, forces�
step=step+1

phys.velocities+ =0.5� timestep�phys.invmasses� forces.force

Note that we provide line numbers in parentheses for the
codes implementing HMC. We indicate code listing 2 as
CL2, etc.

1. Momenta generation: Given initial positions x generate
initial momenta p from a Maxwell distribution �line 21
in CL2�.

2. Compute the initial total energy H�x ,p� �line 22 in
CL2�.

3. MD: Apply several steps of VV, Eqs. �1�, �2�, �3a�, and
�3b�, starting from x ,p to obtain new positions and ve-
locities x� and p� �line 23 in CL2, which calls CL1�.

4. Compute the final total energy H�x� ,p�� �line 24 in
CL2�.

5. Metropolis: Accept x� with probability
min�1,exp��H�x ,p�−H�x� ,p��� / �kBT��� �line 25 in
CL2, which calls CL3�. If x� is rejected, keep x �line 29
in CL2�.

Note that HMC performs the Metropolis step based on
the difference of the total energy, rather than the potential
energy as is customary for methods that sample configuration

174106-2 Sweet et al. J. Chem. Phys. 131, 174106 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

space. The reason this step is needed is to eliminate bias
introduced by the MD step. HMC is still a method to sample
configuration space.

Code Listing 2: Hybrid Monte Carlo
def hmc�phys, forces, hmc_steps, md_steps, md_timestep, fg�:

preconditions:
phys.positions �numpy array� must be set
phys.temperature �scalar� must be set in Kelvin
hmc_steps is number of hmc steps
md_steps is number of MD steps per hmc step
md_timestep is MD timestep in femtoseconds
fg has force field data, and method fg.calculateForces
step=1
temp=phys.temperature
fg.calculateForces computes forces using phys.positions
& forces are stored in numpy array forces.force
& total energy is stored in scalar forces.totalEnergy
fg.calculateForces�phys, forces�
while �step� =hmc_steps�:

save state in case of rejection:
deepcopy�src, dest� deep copies 2 numpy arrays
deepcopy�phys.positions, currPos�
Generate Momenta: Gaussian distribution centered at T
& phys.velocities are updated; uses phys.invmasses
phys.randomVelocity�temp�
currE=forces.energies.totalEnergy�phys�
velocityVerlet�phys, forces, md_steps, md_timestep, fg�
newE=forces.energies.totalEnergy�phys�
accept=metropolis�newE,currE, temp�
if�accept�:

deepcopy�phys.positions, currPos� # save state
else:

deepcopy�currPos, phys.positions� # restore state

The goal of S2HMC is to use a processed VV method
whose shadow Hamiltonian is separable and fourth order,

H̃�x,p� =
1

2
pTM−1p + U�x� +

�t2

24
Ux

TM−1Ux + O��t4� .

�2�

Code Listing 3: Metropolis Function
import Constants # for Boltzmann constant
from random import � # for random��
from math import � # for exp��

def metropolis�new, curr, temp�:
new and curr are energies in kcal/mol
temp is temperature in Kelvin
deltaE=new−curr
if�deltaE�0�:

return 1
acceptProb=exp�−deltaE / �Constants.boltzmann� �� temp��
randNum=random� �
if�randNum�acceptProb�:

return 1
else:

return 0

The processed Verlet is achieved by applying a prepro-
cessing step to the phase space variables x and p prior to the
VV propagation and applying the inverse mapping afterward
for postprocessing. The theoretical justification of the
shadow Hamiltonian, the preprocessing, and postprocessing
steps are found in Sec. III.

The preprocessing step is given by

p̂ = p −
�t

24
�Ux�x + �tM−1p̂� − Ux�x − �tM−1p̂�� , �3a�

x̂ = x +
�t2

24
M−1�Ux�x + �tM−1p̂� + Ux�x − �tM−1p̂�� ,

�3b�

requiring an iterative solution for p̂ and a direct computation
for x̂.

The postprocessing step is given by

x = x̂ −
�t2

24
M−1�Ux�x + �tM−1p̂� + Ux�x − �tM−1p̂�� ,

�4a�

p = p̂ +
�t

24
�Ux�x + �tM−1p̂� − Ux�x − �tM−1p̂�� , �4b�

requiring an iterative solution for x and a direct computation
for p̂. Since the differences p− p̂ and x− x̂ are O��t2�, a fixed
point iteration converges rapidly for both preprocessing and
postprocessing.

An implementation in Python of the shadow Hamil-
tonian computation is shown in code listing 4. This code is
used to implement the S2HMC method in code listing 5. The
S2HMC method using VV then becomes the following:

�1� Momenta generation: Given initial positions x generate
initial momenta p from a Maxwell distribution �line 17
in CL5�.

�2� Compute the initial shadow energy H̃�x ,p� using Eq.
�2�. Note that this computation is dependent only on the
total energy, the time step, the forces, and the inverse
masses �line 20 in CL5, which calls CL4�.

�3� Preprocessing: Starting from x and p, solve iteratively
for p̂ and directly compute x̂ using Eqs. �3a� and �3b�
�line 23 in CL5�. The MD step is done using these
processed positions and momenta.

�4� MD: Apply several steps of VV starting from x̂ and p̂
to obtain new positions and velocities, x̂� and p̂� �line
25 in CL5, which calls CL1�.

�5� Postprocessing: Starting from x̂� and p̂�, solve itera-
tively for x� and directly compute p� using Eqs. �4a�
and �4b� �line 27 in CL5�.

�6� Compute the final shadow energy H̃�x� ,p�� using Eq.
�2� �line 29 in CL5, which calls CL4�.

�7� Metropolis: Accept x� with probability

min�1,exp��H̃�x ,p�− H̃�x� ,p��� / �kBT���. If x� is re-
jected, keep x �lines 30–34 in CL5, which call CL3�.

�8� Compute weight: To compute the averages of a quan-
tity A�x� using S2HMC, reweighting of the sequence of
A is needed. At each step i of S2HMC, the weight for
the canonical ensemble can be computed as

�i = exp��H̃�xi,pi� − H�xi,pi��/�kBT�� , �5�

where xi and pi are the positions and momenta accepted
in the Metropolis step. These weights can be used after

174106-3 Separable shadow Hamiltonian HMC J. Chem. Phys. 131, 174106 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

a simulation is finished: the reweighted estimator �̃ of
an average for A�x� is

�̃ =
�i�iAi�xi�

�i�i
. �6�

Code Listing 4: S2HMC Shadow Hamiltonian Compu-
tation
def computeShadow�phys, forces, dt�:

preconditions:
forces.force and forces.totalEnergy have been computed
phys.invmasses has been populated
dt is MD timestep in femtoseconds
postcondition:
return shadow: S�x , p�=H�x , p�+dt2 /24Ux

TM−1Ux

dt2d24=dt�dt /24.0
result=forces.energies.totalEnergy�phys�
use numpy function dot for computing dot product
Uq_M_Uq=dot�forces.force,phys.invmasses� forces.force�
result+ =dt2d24�Uq_M_Uq
return result

III. THEORETICAL JUSTIFICATION

Recall that HMC requires the MD integrator to be vol-
ume preserving and reversible in order to satisfy detailed
balance. In this section we show that S2HMC satisfies de-
tailed balance by showing the processed leapfrog is symplec-
tic and reversible. We also show that the shadow Hamil-

tonian H̃ of S2HMC is conserved to fourth order for
processed leapfrog. Finally, we derive and analyze the effect
of reweighting on statistical efficiency.

A. S2HMC satisfies detailed balance

The goal of S2HMC is to use a processed7 leapfrog
method whose fourth order shadow Hamiltonian is sepa-
rable,

H̃�x,p� =
1

2
pTM−1p + Ũ�x� + O��t4� , �7�

for a modified potential energy Ũ. The modified or shadow
Hamiltonian is a result of applying backward error analysis
to numerical integrators.7 In the analysis of numerical inte-
grators for Hamiltonian systems, shadow Hamiltonians are
quantities that are better conserved than the true Hamil-
tonian. In particular, a fourth order shadow Hamiltonian is
conserved within O��t4�, where �t is the discretization time
step. For symplectic integrators one can construct shadow
Hamiltonians of arbitrarily high order.16,17

Code Listing 5: Separable Shadow Hamiltonian Hybrid
Monte Carlo
def s2hmc�phys, forces, hmc_steps, md_steps, md_timestep, fg�:

preconditions:
phys.positions �numpy array� must be set
phys.temperature �scalar� must be set in Kelvin
hmc_steps is number of hmc steps
md_steps is number of MD steps per hmc step
md_timestep is MD timestep in femtoseconds
fg has force field data, and method fg.calculateForces
step=1

temp=phys. temperature
save state in case of rejection:
deepcopy�src, dest� deep copies 2 numpy arrays
deepcopy�phys.positions, currPos�

while �step� =hmc_steps�:
Generate Momenta: Gaussian distribution centered at T
& phys.velocities are updated; uses phys.invmasses
phys.randomVelocity�T�
Compute shadow: S�x , p�=H�x , p�+dt2 /24Ux

TM−1Ux

fg.calculateForces�phys, forces�
currE=computeShadow�phys, forces,md_timestep�
Preprocessing: Iteratively solve for hat_p; compute hat_x
These are stored in hat.velocities and hat.positions:
hat=preprocess�phys�
fg.calculateForces�hat, forces�
velocityVerlet�hat, forces, fg, md_steps, md_timestep�
Postprocessing: Iteratively solve for x; compute p:
phys=postprocess�hat�
fg.calculateForces�phys, forces�
newE=computeShadow�phys, forces,md_timestep�
accept=metropolis�newE,currE, temp�
if�accept�:

deepcopy�phys.positions, currPos� # save state
else:

deepcopy�currPos, phys.positions� # restore state

A processed integrator is a new hopefully better integra-
tor constructed by doing a preprocessing or change in phase
space variables prior to propagation by another integrator. A
postprocessor, which is an inverse of the preprocessing map-
ping, is evaluated when output is required. Processing is ad-
vantageous if the processed method is more accurate than the
original integrator.18 In our application the cost of processing
is amortized over a number of MD steps performed before
doing a Metropolis MC evaluation.

Equation �7� for S2HMC is obtained by applying a pre-
processing map to the phase space variables x and p prior to
the MD propagation and applying the inverse mapping after-
ward for postprocessing. The map should commute with re-
versal of momenta and should preserve phase space volume
so that the resulting S2HMC ensures detailed balance. We
can get a symplectic map using a generating function of the
third kind,

S�x,p̂� = xTp̂ +
�t

24
�U�x + �tM−1p̂� − U�x − �tM−1p̂�� .

�8�

The map �x̂ , p̂�=��x ,p� is given by

x̂ =
�S

�p̂
, p =

�S

�x
. �9�

The map �x̂ , p̂�=��x ,p� from Eq. �8� is given precisely by
Eqs. �3a� and �3b�. This map is the “preprocessing” step of
S2HMC. In other words, it is the canonical change in vari-
ables that preserves the symplectic property of the processed
leapfrog. The inverse mapping �−1 is given by Eqs. �4a� and
�4b�. The inverse mapping is the “postprocessing” step of
S2HMC.

The reversibility of the processed leapfrog can be shown

174106-4 Sweet et al. J. Chem. Phys. 131, 174106 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

using ��x ,−p�=diag�I ,−I���x ,p�. Thus, since the processed
leapfrog is both symplectic and reversible, S2HMC pre-
serves detailed balance.

B. A fourth order shadow Hamiltonian for the
processed leapfrog

A fourth order modified or shadow Hamiltonian for the
processed leapfrog can be shown to be given by Eq. �2�. The
numerical solution of a leapfrog is known to be near the
analytical solution of a nearby Hamiltonian system whose
shadow Hamiltonian is19

H̃0�x̂,p̂� = U�x̂� + K�p̂� + 1
12�t2Kp

TUxxKp

− 1
24�t2Ux

TKppUx + O��t4� . �10�

Recall that K�p� is the kinetic energy 1
2pTM−1p.

The transformed variables x̂ and p̂ have as their Hamil-

tonian H̃0 given by Eq. �10�. The original variables x and p
are related to the transformed variables by �x̂ , p̂�=��x ,p�,
hence H̃�x ,p�= H̃0���x ,p��. This is true because the transfor-
mation is symplectic.

We find power expansions for x̂ and p̂ of the appropriate
order,

x̂ = x +
�2

12
M−1Ux + O��4� , �11�

p̂ = p −
�2

12
UxxM−1p + O��4� . �12�

By substituting Eqs. �11� and �12� into Eq. �10�, and then
finding a power expansion for each term, we obtain the
shadow Hamiltonian of Eq. �2�.

C. Reweighting in S2HMC

HMC can be thought to be a sampling from a probability
density function �PDF� ��x ,p�, which typically is the canoni-
cal distribution, and is induced by the Hamiltonian or total
energy. Since the PDF for the SHMC method is induced by
the shadow Hamiltonian, observables must be reweighted to
obtain the values that would have resulted from using the
correct PDF. Given that the PDF for the shadow Hamiltonian
is �̃�x ,p� and the required PDF is ��x ,p�, then for an ob-

servable A�x ,p� the reweighted estimator �̃ for the expected
value of A, given a sequence �Ai�, is given by Eq. �6�, where
�i���xi ,pi� / �̃�xi ,pi�. For the canonical ensemble the
weights are given by Eq. �5�, noting that the constant of
proportionality, equal to the ratio of the partition functions of

H̃ and H, cancels in Eq. �6�.
An estimate of the variance of the observable itself can

be obtained from20

Var�A�estimator =
�i�i

��i�i�2 − �i�i
2�

i

�i�Ai − �̃�2 �13�

and is verified in the tests in Sec. V, Table I.
Reweighting of observables leads to an increase in vari-

ance of the estimator of the expected value of A. In the
following discussion we assume that the observables Ai

=A�xi ,pi� are independent. For nonreweighted data, denoting
the estimator of the expected value of an observable A�x ,p�
as �, then

Var��� = Var	�iAi

n

 =

Var�A�
n

, �14�

where n is the number of samples.21 For the reweighted ob-

servable the variance of the estimator of the expected value �̃
is

Var��̃� = Var	�i
n�iAi

�i
n�i

 = Var�A�
�i

n�i
2

��i
n�i�2 . �15�

Since ��i
n�i

2 /�i
n�i�2	1 /n, the variance of the reweighted

estimator of the expected value is greater than or equal to the
variance of the nonreweighted observables.

The implication of this observation is that although
S2HMC increases the probability of acceptance of the MD
step, this improvement needs to be offset by the slower con-
vergence to the expected values of the observables. However,
on a finite time scale, the issue is one of adequately explor-
ing phase space rather than the increase in variance of the
estimator due to nonuniform weighting. Thus, the ability of
S2HMC to sample more efficiently, due to its use of a fourth
order processed leapfrog rather than a second-order leapfrog,
is the key to the performance benefits of using the method.
We show how this happens in Sec. IV.

IV. THEORETICAL EFFICIENCY

The S2HMC MD move is accepted with probability

min�1,exp�−
�H̃�� where �H̃=H̃�x� ,p��−H̃�x ,p�. For
large systems, we expect that different parts of the system are
sufficiently decoupled to behave like independent random

variables, leading to �H̃ being normally distributed. Assum-

ing this to be the case and that �H̃ has mean ��H̃ and vari-
ance �

�H̃
2

, then the average acceptance ratio RS is

TABLE I. Mean estimate �in kcal mol−1� and SD estimate of the potential
energy for HMC, SHMC, and S2HMC on a 4002 atom water box with
periodic boundary conditions. These simulations have 200 000 MD steps
using time step of 1 fs and 200 MC steps. The bracketed value for S2HMC
is the nonreweighted SD. The reference value was computed using six dif-
ferent initial conditions and running 25 different simulations with different
random seeds for the momenta generation �see text�.

Method Mean estimate SD estimate

Reference 14 223 15
HMC 14 259 76
SHMC 14 238 70
S2HMC 14 216 73 �64�

174106-5 Separable shadow Hamiltonian HMC J. Chem. Phys. 131, 174106 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

RS =
1

�2���H̃

��
−�

�

min�1,exp�−
x��exp	− �x − ��H̃�2

2�
�H̃
2
dx .

�16�

The moment distribution function for normal distributions is
the expected value of exp�tX� given by E�exp�tX��=exp��t
+�2t2 /2�. The cumulant generating function is the logarithm
of the moment generating function �t+�2t2 /2. From the vol-
ume preservation property of the numerical integrator,8 we

have exp�−
�H̃���̃=1. This is equivalent to saying that the

moment-generating function for the random variable �H̃
evaluated at −
 is equal to 1 and can be expanded into cu-

mulants k1 ,k2 , Since �H̃ is expected to be normally dis-
tributed, we have k1=��H̃, k2=�

�H̃
2

, and kn=0∀n�2.

Evaluating the cumulant generating function at −
 we get
��H̃= �
 /2��

�H̃
2

. From this and Eq. �16�, the average prob-

ability of accepting the move is

RS = erfc	 1

2�2

��H̃
 . �17�

Again, for sufficiently large systems we would expect that
�

�H̃
2

�N, where N is the number of atoms.

For higher order shadow Hamiltonians, the improvement
in sampling efficiency of SHMC was shown to be asymptoti-
cally O�N1/4�.8 Thus, using the procedure outlined here for
S2HMC to construct higher order Hamiltonians would pro-
duce even more efficient methods.

V. NUMERICAL TESTS

We present numerical tests on different size water boxes
to illustrate S2HMC’s scalability with system size. Tests
were performed with the open-source simulator
PROTOMOL,13 which uses the CHARMM 22 force field.22,23

We tested the method using five boxes of flexible TIP3P
�Ref. 24� water with 1002, 2001, 4002, 8001, and 16 002
total atoms. The choice of water boxes reflects our need to
test the scalability of hybrid methods on system size and
have consistency across models. The simulations were done
with periodic boundary conditions at a temperature of 300 K.
For HMC, S2HMC, and SHMC, a 100 fs MD trajectory was
performed for each of 500 MC steps.

The analysis for the average acceptance probability for
the HMC method is identical to that given for S2HMC, ex-
cept for the substitution of the variance of the original
Hamiltonian difference ��H

2 . It is evident that the efficiency
of the S2HMC method will scale favorably with time step �t
when compared with HMC as the standard deviation �SD�
��H̃ scales with �t4 instead of �t2 for ��H. To illustrate this,

we assume �H to have variance �a
2 for time step �a and �H̃

to have variance �b
2 at time step �b. If the MD time interval is

of fixed length T then the efficiency is inversely proportional

to the time step. The increase in performance due to the
S2HMC method S will then be the ratio of the maximum
efficiencies for both methods,

S =

max�tb�erfc	 1

2�2

�b	�tb

�b

4
�tb�

max�ta�erfc	 1

2�2

�a	�ta

�a

2
�ta� , �18�

where �a, �b, �a, and �b can be measured from simulation.
In Fig. 1, S is shown for different system sizes and can

be compared with the performance of SHMC, which is also
plotted. It was possible to use time steps of 1 fs for all of the
models without the average acceptance probabilities falling
below 0.85. The S2HMC maximum curve is the analytical
solution given in Eq. �18� after determining the variance of

�H and �H̃ from simulation. It is clear that there is a sig-
nificant improvement for all of the boxes of water and an
efficiency increase for S2HMC of greater than two times for
boxes containing more than 4002 atoms. Equations �3a� and
�4b� were solved iteratively until a user-specified conver-
gence was achieved. The cost of these preprocessing and
postprocessing steps for S2HMC is negligible and could not
be distinguished from statistical error for the runtime across
different runs of our tests. As an illustration, the norm-
squared tolerance and the number of iterations to converge x̂
and p̂ are given below. The results are the same for water
boxes from 1000 to 16 000 atoms within one iteration.

Tolerance x̂ iterations p̂ iterations

1�10−8 4 3
1�10−12 5 4
1�10−16 6 5

The estimated variance of the potential energy for the
4002 atom water box is shown in Table I for HMC, SHMC,
and S2HMC. This indicates that the correct variance is ob-
tained with the reweighting. The convergence of the average

potential energy to its expected values � and �̃ for the 4002
atom water model was measured for HMC and S2HMC. This
is shown in Fig. 2 where the error bars represent 1 SD, as
estimated by Eq. �14� or Eqs. �15� and �13�. This confirms
that adequately sampling phase space is more important than
the increase in variance due to nonuniform weighting for all
but the smallest of systems.

0 2000 4000 6000 8000 10000 12000 14000 16000

1

1.5

2

2.5

3

3.5

Sp
ee

du
p

Simulation Atoms

S2HMC experiment
SHMC speedup
S2HMC max.

FIG. 1. The increase in performance due to the S2HMC and SHMC meth-
ods �speedup�. The S2HMC max curve is the analytical solution given in Eq.
�18� after determining the variance of the Hamiltonian and shadow Hamil-
tonian from simulation.

174106-6 Sweet et al. J. Chem. Phys. 131, 174106 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

We carried out further tests to estimate the average po-
tential energy for the 4002 water box model. By taking six
configurations produced from the above tests at 100 000 step
intervals and running 25 simulations of 100 000 steps for
each one using different seeds for generating momenta, an
average was determined as −14 223.4 kcal mol−1. There is
thus a total of 6+6�25=156 configurations used to compute
the average. This result is shown in Fig. 2 for comparison to
the above tests.

VI. CONCLUSIONS

The S2HMC method based on a processed leapfrog
method that has a fourth order separable shadow Hamil-
tonian overcomes the limitations of SHMC by removing the
need to generate momenta from a nonseparable PDF.
S2HMC can thus achieve the theoretical maximum speedup
over HMC methods using fourth-order integrators, at the cost
of a second-order leapfrog. This was proven analytically and
experimentally with water boxes from 1002 to 16002 atoms.
The efficiency of S2HMC in common with HMC is largely
independent of the MD trajectory. S2HMC gives over a fac-
tor of 2 speedup over HMC in our tests.

S2HMC is thus a rigorous method that needs no fine
tuning of parameters, a significant advantage over the origi-
nal SHMC. The ideas behind S2HMC could be combined
with generalizations of SHMC, such as TSHMC and
GSHMC, which would allow other ensembles and simula-
tion types to be performed, such as those with weak thermo-
stating. Significantly, since the biased distribution of S2HMC
and the target distribution are very close, there is no statisti-
cal inefficiency. The main contributor to the speedup of
S2HMC in estimating statistics comes from the enhanced
sampling of configuration space.

We envision that S2HMC and potential generalizations
would be most useful in applications that require high accu-
racy. The implementation of S2HMC and an optimized

SHMC used here are available in the program PROTOMOL 2.1.
The Python implementation used to present the method can
be found in http://mdlab.sourceforge.net/s2hmc.

ACKNOWLEDGMENTS

This material is based upon the work supported by the
National Science Foundation �Grant Nos. DBI-0450067 and
CCF-0135195� and the National Institute of General Medical
Sciences �Grant No. R01GM083605�.

1 S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Phys. Lett. B
195, 216 �1987�.

2 A. Brass, B. J. Pendleton, Y. Chen, and B. Robson, Biopolymers 33,
1307 �1993�.

3 B. Mehlig, D. W. Heermann, and B. M. Forrest, Phys. Rev. B 45, 679
�1992�.

4 M. Creutz, Phys. Rev. D 38, 1228 �1988�.
5 A. D. Kennedy and B. Pendleton, Nucl. Phys. B, Proc. Suppl. 20, 118
�1991�.

6 M. López-Marcos, J. M. Sanz-Serna, and R. D. Skeel, Numerical Analy-
sis 1995 �Longmans, Green, New York, 1996�, pp. 107–122.

7 E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations,
Springer Series in Computational Mathematics Vol. 31 �Springer-Verlag,
Berlin, 2002�.

8 J. A. Izaguirre and S. S. Hampton, J. Comput. Phys. 200, 581 �2004�.
9 E. Akhmatskaya and S. Reich, New Algorithms for Macromolecular
Simulation �Springer-Verlag, Berlin, 2006�, Vol. 49, pp. 141–151.

10 C. L. Wee, M. S. Sansom, S. Reich, and E. Akhmatskaya, J. Phys. Chem.
B 112, 5710 �2008�.

11 E. Akhmatskaya and S. Reich, J. Comput. Phys. 227, 4934 �2008�.
12 E. Akhmatskaya, N. Bou-Rabee, and S. Reich, J. Comput. Phys. 228,

2256 �2009�.
13 T. Matthey, T. Cickovski, S. S. Hampton, A. Ko, Q. Ma, M. Nyerges, T.

Raeder, T. Slabach, and J. A. Izaguirre, ACM Trans. Math. Softw. 30,
237 �2004�.

14 L. Verlet, Phys. Rev. 159, 98 �1967�.
15 T. Cickovski, C. Sweet, and J. A. Izaguirre, Proceedings of the 40th

Annual Simulation Symposium, 2007, pp. 256–266.
16 R. D. Skeel and D. J. Hardy, SIAM J. Sci. Comput. �USA� 23, 1172

�2001�.
17 R. D. Engle, R. D. Skeel, and M. Drees, J. Comput. Phys. 206, 432

�2005�.
18 S. Blanes, S. Casas, and A. Murua, SIAM �Soc. Ind. Appl. Math.� J.

Numer. Anal. 42, 531 �2004�.
19 T. Littell, R. Skeel, and M. Zhang, SIAM �Soc. Ind. Appl. Math.� J.

Numer. Anal. 34, 1792 �1997�.
20 P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis

for the Physical Sciences �McGraw-Hill, New York, 2003�.
21 M. E. Nelson and J. M. Bower, Trends Neurosci. 13, 403 �1990�.
22 A. D. MacKerell, Jr., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J.

Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph, L.
Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T.
Nguyen, B. Prodhom, B. Roux, M. Schlenkrich, J. Smith, R. Stote, J.
Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus,
FASEB J. A143, 6 �1992�.

23 A. D. MacKerell, Jr., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J.
Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph, L.
Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T.
Nguyen, B. Prodhom, I. W. E. Reiher, B. Roux, M. Schlenkrich, J. Smith,
R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and
M. Karplus, J. Phys. Chem. B 102, 3586 �1998�.

24 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L.
Klein, J. Chem. Phys. 79, 926 �1983�.

0 50000 100000 150000 200000 250000
−14260

−14240

−14220

−14200

−14180

−14160

−14140

MD steps

Po
te

nt
ia

le
ne

rg
y

S2HMC
HMC
HMC average

FIG. 2. Average potential energy for 4002 atom water model. The error bars
represent 1 SD, estimated as discussed in Sec. III C. The average HMC
value was obtained from a total of 156 configurations generated from six
different initial conditions and 25 different seeds for generating initial mo-
menta from each initial condition �6+6�25=156 configurations�. Each ini-
tial condition was taken every 100 000 steps from an original simulation,
and then each one of the remaining 150 simulations was run for additional
100 000 steps.

174106-7 Separable shadow Hamiltonian HMC J. Chem. Phys. 131, 174106 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1002/bip.360330815
http://dx.doi.org/10.1103/PhysRevB.45.679
http://dx.doi.org/10.1103/PhysRevD.38.1228
http://dx.doi.org/10.1016/0920-5632(91)90893-J
http://dx.doi.org/10.1016/j.jcp.2004.04.016
http://dx.doi.org/10.1021/jp076712u
http://dx.doi.org/10.1021/jp076712u
http://dx.doi.org/10.1016/j.jcp.2008.01.023
http://dx.doi.org/10.1016/j.jcp.2008.12.014
http://dx.doi.org/10.1145/1024074.1024075
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1137/S106482750138318X
http://dx.doi.org/10.1016/j.jcp.2004.12.009
http://dx.doi.org/10.1137/S0036142902417029
http://dx.doi.org/10.1137/S0036142902417029
http://dx.doi.org/10.1137/S0036142995287094
http://dx.doi.org/10.1137/S0036142995287094
http://dx.doi.org/10.1016/0166-2236(90)90119-U
http://dx.doi.org/10.1021/jp973084f
http://dx.doi.org/10.1063/1.445869

