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Abstract. This paper shows that in molecular dynamics (MD) when constant- energy (NVE)
simulations of Newton’s equations of motion are attempted using the multiple time stepping (MTS)
integrator Verlet-I/r-RESPA/Impulse, there are nonlinear instabilities when the longest step size
is a third or possibly a fourth of the period(s) of the fastest motion(s) in the system. This is
demonstrated both through a thorough set of computer experiments and through the analysis of a
nonlinear model problem. The numerical experiments include not only the unconstrained dynamics
simulation of a droplet of flexible water and a flexible protein, but also the constrained dynamics
simulation of a solvated protein, representing a range of simulation protocols commonly in use by
biomolecular modelers. The observed and predicted instabilities match exactly. Previous work has
identified and explained a linear instability for Verlet-I/r-RESPA/Impulse at around half the period
of the fastest motion. Mandziuk and Schlick discovered nonlinear resonances in single time stepping
MD integrators, but unstable nonlinear resonances for MTS integrators are reported here for the
first time. This paper also offers an explanation on the instability of MTS constrained molecular
dynamics simulations of explicitly solvated proteins. More aggressive multiple step sizes are possible
with mild Langevin coupling or targeted Langevin coupling, and its combination with the mollified
Impulse method permits step sizes 3 to 4 times larger than Verlet-I/r-RESPA/Impulse while still
retaining some accuracy.
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1. Introduction. This paper uncovers additional stability limitations of mul-
tiple time stepping (MTS) integrators for molecular dynamics (MD) that attempt
to bridge time scales. In particular, it is shown that when constant-energy (NVE)
simulations of Newton’s equations of motion are attempted using the MTS integrator
Verlet-I [12]/r-RESPA [42]/Impulse, there are nonlinear instabilities when the longest
step size is a third or possibly a fourth of the period(s) of the fastest motion(s) in the
system. This is demonstrated both through a thorough set of computer experiments
and through the analysis of a nonlinear model problem. The observed and predicted
instabilities match exactly.

A linear instability for Verlet-I/r-RESPA/Impulse at around half the period of the
fastest motion has been identified and explained by previous work [9, 40]. Mandziuk
and Schlick [29] discovered nonlinear resonances in single time stepping MD integra-
tors, but unstable nonlinear resonances for MTS integrators are reported here for the
first time.
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We offer a two-part solution to enhance the stability of Verlet-I/r-RESPA/Impulse:
the use of the mollified Impulse method [9, 20], a more stable variant of Verlet-I/r-
RESPA/Impulse, along with the use of mild Langevin coupling [2, 15, 17] or targeted
Langevin coupling [25]. This combination allows us to perform stable simulations
with step sizes 3 to 4 times larger than Verlet-I/r-RESPA/Impulse while still retain-
ing some accuracy.

1.1. Motivation. The modeling of large biological molecules is an area of great
promise, with the availability of genomic information and protein crystal structures.
Scientists want to compute dynamics and thermodynamic properties of these molecules
to be able to predict drug affinity, etc. Molecular dynamics is the most widely used
simulation technique for these calculations. Starting with the atomic coordinates, the
molecular connectivity, and force field parameters, long trajectories are computed by
solving Newton’s equations of motion. A severe limitation in the ability of these sim-
ulations is given by the great range of time scales in biological systems, which span
fifteen orders of magnitude.

1.2. Time scale limitations of molecular dynamics. Molecular dynamics
solves the system of ODEs given by

q̇ =M−1p, ṗ = −U ′(q),(1.1)

where q is the position vector, p is the momentum vector, U(q) is the potential energy,
−U ′(q) is the force, and M is the mass matrix.

In an attempt to bridge the time scale gap between simulations and the phe-
nomena of interest, multiple time stepping integrators have been introduced and have
been an area of active research for more than a decade. The prototypical algorithm is
the Verlet-I/r-RESPA/Impulse integrator, which splits the forces into fast and slow
components and evaluates the former more frequently than the latter.

Assuming the fast force is harmonic, the discretization of this problem using
Verlet-I/r-RESPA/Impulse with step size h for the slow part and analytical solution
of the fast part is given by the following:

1
2 kick:

p+0 = p−
h

2
U ′(q).(1.2)

oscillate: Let s′ = sinhΩ and c′ = coshΩ; we have[
q1
p+1/2

]
=

[
c′ s′

Ω−Ωs′ c′

] [
q
p+0

]
.(1.3)

1
2 kick:

p1 = p
+
1/2 −

h

2
U ′(q1).(1.4)

Verlet-I/r-RESPA/Impulse exhibits severe instability when the longest step size h
is a multiple of the period of the fastest motion and a numerical instability at half the
shortest period. These results have been confirmed through numerical experiments [8]
and using simple linear-force model problems [2, 36, 40, 7].
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1.3. Linear instabilities of multiple time stepping integrators. For ex-
plicitly solvated biological molecules and unconstrained MD simulations, the shortest
period is around 10 fs and the linear instability occurs at about 5 fs. It turns out that
some systematic drift can be observed in simulations reported in the literature even
when using longest time steps around 3 or 4 fs; cf. Figure 2 in [8], Figure 3 in [44],
and [14].

In an effort to overcome the linear instability of Verlet-I/r-RESPA/Impulse, we
and other researchers have developed the mollified Impulse method (MOLLY) [9, 10,
16, 17, 18, 20]. MOLLY defines the slow part of the potential energy at time-averaged
positions, and the force is made a gradient of the potential energy. The time average is
obtained by doing dynamics over vibrations using forces that produce those vibrations.
Thus,

U slow(q) becomes U slow(A(q)),(1.5)

with the force defined as a gradient of this averaged potential,

−∇U slow(q) is replaced by −Aq(q)
T∇U slow(q),(1.6)

where Aq(q) is a sparse Jacobian matrix.
This perturbation compensates for finite ∆t artifacts. Intuitively, averaged po-

sitions are better than instantaneous values for a rapidly changing trajectory q(t).
Perturbing the potential rather than the force ensures that the numerical integrator
remains symplectic [37]. The force used by MOLLY is the gradient of the perturbed
potential. The prefactor Aq(q)

T can be seen as a filter that eliminates components of
the slow force Impulse in the directions of the fast forces, and thus improves the stabil-
ity of Verlet-I/r-RESPA/Impulse. Different averaging functions give rise to MOLLY
integrators with different stability and accuracy properties. We have used two dif-
ferent averaging methods, one based on explicit time averaging, which is reported
in [40], and Equilibrium MOLLY, which in the case of linear forces is a nearly perfect
filter1 [20]. This method lengthens the longest step size by 50% and has been imple-
mented in a production MD code, NAMD 2 [22], and in the experimental framework
ProtoMol [19, 30].

1.4. Nonlinear instabilities in Verlet-I/r-RESPA/Impulse for uncon-
strained and constrained dynamics. The effect of nonlinear instabilities is a
mild but systematic drift in the energy. This paper shows that there is a 3:1, and
possibly a 4:1, nonlinear instability in Verlet-I/r-RESPA/Impulse for both uncon-
strained and constrained dynamics that significantly limits the stability region of the
method. More precisely, there is a 3:1 unconditionally unstable resonance and a 4:1
conditionally stable resonance in Verlet-I/r-RESPA/Impulse.

We present empirical evidence of the nonlinear instabilities through precise com-
puter experiments in section 2. Two sets of the flexible water simulations are per-
formed: one under controlled conditions resembling the equilibrium point of the inte-
grator, where the KAM stability theory holds, the other at room temperature. Both
sets of experiments clearly reveal the 3:1 instability and the 4:1 resonance. One set of
flexible protein simulations reveal the 3:1 instability that correlates to several fastest
modes that are very close to each other.

1If all the fast forces are included in the averaging, then it is a perfect filter, although this is not
the case in practice.
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Even though with proper constraining using SHAKE [6, 43] or RATTLE [1, 31]
the modes associated with stretching of bonds of polar hydrogen in the biomolecules
and the bond stretching and angle bending in the solvent (water) molecules can be
eliminated altogether, constrained dynamics simulations of explicitly solvated bio-
molecules using Verlet-I/r-RESPA/Impulse with SHAKE or RATTLE as the inner-
most integrator still exhibit instabilities when outer time steps are greater than 4 fs
for long simulations. Simulations using Verlet-I/r-RESPA/Impulse with SHAKE as
the innermost integrator suffer from the 4:1 and 3:1 nonlinear instabilities too.

We also perform a nonlinear analysis of Verlet-I/r-RESPA/Impulse applied to a
simple nonlinear model problem. The analysis procedure is outlined in section 3. The
application to multiple time stepping is in section 4. Appendix A justifies the analysis
procedure.

Note that we may get instability even for longer step sizes than those with nonlin-
ear resonances. This is due to the linear instability at half the period, which manifests
itself in the neighborhood of that step size, and also to the fact that at nonzero tem-
peratures different normal modes are mixed through energy transfer.

1.5. Removal of instabilities using mild stochasticity. The nonlinear in-
stabilities of Verlet-I/r-RESPA/Impulse that are reported and analyzed in this paper
are likely to be very significant in long MD simulations, which are made possible by
the tenfold increase in computer power every five years and the desire to simulate
longer processes that are of biological relevance and that can be experimentally ver-
ified, such as the folding of proteins. For applications of conformational dynamics
where one wishes the energy to remain constant around a certain value of interest,
the effect of nonlinear instabilities is also highly undesirable.

In our papers [17] we show the possibility of using very mild stochastic coupling
to stabilize long step size integrators for Newtonian molecular dynamics. More specif-
ically, stable and accurate integrations are obtained for coupling coefficients that are
only a few percent of the natural decay rate of processes of interest, such as the velocity
autocorrelation function. A 300% increase in the time step is possible using MOLLY
with mild Langevin coupling while still computing dynamic properties accurately.

In our papers [25, 26] we show the possibility of using targeted Langevin coupling,
a scheme that preserves linear momentum, to stabilize long step size integrators for
Newtonian molecular dynamics. Even longer time steps are possible: A 400% increase
in the time step has been achieved using MOLLY with targeted Langevin coupling
while still computing dynamic properties accurately.

2. Numerical experiments. The numerical experiments in this section show
that there are instabilities at around a third or possibly a fourth of the period(s) of
the fastest motion(s) when integrating Newton’s equations of motion using Verlet-
I/r-RESPA/Impulse. All simulations use the CHARMM force field [27, 28]. The
numerical experiments also show that for realistic biological systems such as explicitly
solvated proteins, the step size is also limited by nonlinear instabilities even when the
bonds of polar hydrogens in the proteins and the bonds and angles in waters are
made rigid using the SHAKE or RATTLE algorithm. The justification of freezing the
almost decoupled high frequency stretching can be found in [33].

Unstable resonances usually manifest themselves in the neighborhood of a certain
step size: There is a definite range of step sizes that cause unbounded energy drift,
even if the neighboring step sizes are stable. Examples of this resonance phenomenon
are presented in [8].
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KAM theory permits the analysis of nonlinear instabilities near an equilibrium
point of an integrator [39, pp. 132–133]. For MTS integrators, equilibrium points are
close to, but not exactly, the state at zero temperature. An example of empirical
nonlinear instability analysis for the single time stepping integrator leapfrog is in [38].
Empirical nonlinear stability analysis for multiple time stepping is presented in this
paper for the first time.

2.1. Model systems. We use three model systems (A, B, and C) for the simu-
lations representing a range of simulation protocols in use by biomolecular modelers.

Model system A is a flexible TIP3P water system of 10 Å of radius, containing
423 atoms. The shortest period of this system is around 10 fs, corresponding to the
symmetric and antisymmetric O-H bond stretching.

Model system B is a flexible protein system with Protein Data Bank (PDB) name
2mlt [11]. This system has two proteins, each containing 434 atoms. The shortest
periods are about 9 fs, 10 fs, and 11 fs, which correspond to O-H, N-H, and C-H
stretching, respectively.

Model system C is an explicitly solvated, rigid water/protein system: the 2mlt
protein system (model system B) immersed in a box (about 58 Å× 38 Å× 25 Å) of
rigid TIP3P water molecules. This system contains 5143 atoms. In the simulations
of this system, the bonds of polar hydrogens in the protein, and the O-H bonds and
H-O-H angles in waters are made rigid by using the SHAKE method. The periods of
the remaining fastest modes are in the range of 18 to 24 fs, which correspond to the
H-X-H angle bending (where X represents a nonhydrogen atom) and C=C stretching.

2.2. Power spectrum analysis for the model systems. All possible vi-
brations of a molecular system can be described as a superposition of fundamental
oscillations, which are termed as normal modes for the molecules. Power spectrum
analysis of the systems of interest forms the basis of correlating the time step related
nonlinear instabilities with one or many of the normal modes.

We perform power spectrum analysis of the time history of the energy of the
simulation to reveal the characteristic frequencies of the normal modes of the system.
In order to make the best use of the power spectrum analysis result, we show the
power spectra versus periods along with the step size related energy drift from the
simulations in section 2.6; see the subfigure on the right of Figures 2.2, 2.4, and 2.5.

Wave-number unit is typically reported in the literatures, which is the number
of waves per centimeter. The wave-numbers of the normal modes of the systems of
interest are presented in Figure 2.1 for reference. All simulations used Verlet-I/r-
RESPA/Impulse with an inner time step of 1 fs and outer time step of 2 fs and have
a length of 200 ps.

Not surprisingly, the size of the inner time step of the MTS integrators used in the
MD simulations affects the accuracy of the frequencies (and thus periods and wave-
numbers) of the fastest motions. The frequencies and errors are shown in Table 2.1.
The method of nonbonded force evaluation generally does not affect the accuracy of
the frequencies of the fastest motions.

2.3. Measuring instabilities. We use the “percent relative drift of total en-
ergy,” Drel, as a metric to measure the instabilities [20], which is given as follows:

Drel = 100bL/K,(2.1)

where b is the slope of the linear curve fit of the block-averaged total energy, L is
the simulation length, and K is the average kinetic energy throughout the simulation.



1956 QUN MA, JESÚS A. IZAGUIRRE, AND ROBERT D. SKEEL

1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Wave number [cm−1]

P
o

w
e

r 
s
p

e
c
tr

u
m

 f
o

r 
K

E

2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wave number (cm−1)
P

o
w

e
r 

sp
e

ct
ru

m
 f

o
r 

T
E

1000 1200 1400 1600 1800 2000
0

0.005

0.01

0.015

0.02

0.025

Wave number [cm−1]

P
o

w
e

r 
sp

e
ct

ru
m

 f
o

r 
K

E

Fig. 2.1. Characteristic frequencies of the fastest normal modes obtained from a 200 ps MD
simulation of the flexible water system (on the left, including the symmetric and asymmetric bond
stretching and angle bending), the flexible 2mlt protein system (on the middle, including the bond
stretching of O-H, N-H, and C-H), and solvated 2mlt system constrained with SHAKE (on the right,
including the angle bending of H-X-H, possibly bond stretching of C=C, and possibly some nonbonded
interactions).

Table 2.1
The periods for symmetric and asymmetric bond stretching in a droplet of flexible water. It

is seen that the bigger the inner step size, the smaller the periods. The unit for the step sizes and
periods is femtosecond (fs). Direct method is used for Coulomb force evaluation.

Integrator (∆t, δt) Period Error (%)

Impulse (2.0, 0.1) (9.87, 10.07) (−, −)
Impulse (2.0, 1.0) (9.71, 9.91) (1.63, 1.50)
Leapfrog (−, 2.0) (9.12, 9.33) (7.65, 7.35)

For a fixed simulation length, the bigger the value of Drel, the more unstable the
simulation becomes. In order to measure the goodness of the linear curve fit, we
define the error bars as two times the “percent relative root mean square deviation,”
δrel, which is given as follows:

δrel =
100

K

√√√√ N∑
i=1

(yi − ỹi)2/N,(2.2)

where N is the number of data points of the block-averaged total energy, yi is the
block-averaged total energy at block-averaged time ti, ỹi is the value of the fitted
straight line at ti.

2.4. Simulation protocol. Each simulation of flexible waters has a length of
500 ps. The system was minimized using 10000 steps of conjugate-gradient minimiza-
tion. Then the system was equilibrated for 100 ps. One system was equilibrated at
0.015K and the other was equilibrated at 300K.

Each simulation of flexible 2mlt proteins has a length of 10 ns. The system was
minimized using 80000 steps of conjugate-gradient minimization. Then the system
was equilibrated for 200 ps at 300K.

Each simulation of the explicitly solvated 2mlt proteins system has a length of
500 ps. The bonds of polar hydrogens in the protein, the O-H bonds, and H-O-H angles
in water are made rigid using the SHAKE method. The system was minimized using
30000 steps of conjugate-gradient minimization. Then the system was equilibrated
for 200 ps at 300K.
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2.5. Simulation programs. We used the program NAMD2.3 [22] to minimize
and equilibrate the flexible water system. Then we ran simulations of this system using
ProtoMol, an experimental component-based framework for MD simulations [19,
30]. ProtoMol has a modular design that allows for easy prototyping of complex
methods, and it is freely available at http://www.nd.edu/˜lcls/Protomol.html.

For the protein and the solvated protein systems, we used the programNAMD2.5
to minimize and equilibrate them and used the same program for the actual simulation
runs.

2.6. Numerical results. Numerical results on the step size–related, nonlinear
instabilities are summarized here for all three model systems. In the interest of repro-
ducibility of our results, we provide additional details to perform these simulations in
Appendix B.

2.6.1. Flexible water at near zero temperature. We perform simulations of
flexible water at 0.015K. The instabilities associated with outer step sizes are plotted
in Figure 2.2 in which each data point represents a 500 ps simulation. It is clear that
in the neighborhood of ∆t = 3.33 fs there is an unstable resonance (3:1) that manifests
itself in an unmistakable drift at that step size. A milder resonance occurs at around
∆t = 2.57 fs (4:1).

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

0

0.2

0.4

0.6

0.8

1

Time step (fs)

P
er

ce
nt

 R
el

at
iv

e 
D

rif
t o

f T
ot

al
 E

ne
rg

y

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Period [fs]

P
o
w

e
r 

sp
e
ct

ru
m

 f
o
r 

K
E

FD, Impulse (∆ t, δ t) = (2.0,0.1)

Fig. 2.2. On the left: Energy drift for Verlet-I/r-RESPA/Impulse applied to a 20Å-diameter
sphere of flexible water at about 0.015 K. Each point represents a 500 ps MD simulation with a step
size ∆t given by the x-axis and an innermost step size δt equal or very close to 0.1 fs so that the
instabilities of the simulations are not due to the errors in the inner integrator; cf. [5]. The peaks
at step sizes of 2.57 fs and 3.33 fs show evidence of 4:1 resonance and 3:1 instability. On the right:
The periods of the fastest normal modes from a 200 ps simulation of the same system with inner
time step of 0.1 fs (at 300K).

2.6.2. Flexible water at room temperature. We also explored whether or
not the instability effect is present at room temperature using the same flexible water
system equilibrated at 300K. We are able to pinpoint the same instabilities as in the
simulations near the equilibrium point. The results are shown in Figure 2.3.

2.6.3. Flexible 2mlt at room temperature. In addition to simulations of
flexible waters, we perform simulations of the flexible 2mlt protein. The instabilities
associated with outer step sizes are plotted in Figure 2.4 in which each data point
represents a 10 ns simulation. Particle Mesh Ewald (PME) is used for Coulomb force
evaluation [3, 4, 34, 45]. The results show that in the neighborhoods of ∆t = 3.00,
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Fig. 2.3. Same as in Figure 2.2 (subfigure on the left) except the temperature here is 300
K. The peaks at step sizes of 2.40 fs and 3.33 fs show evidence of 4:1 resonance and 3:1 instability.
This figure also shows that we may get instability even for longer step sizes in the neighborhood of
nonlinear resonances (the last few data points with 3.33 < ∆t ≤ 3.80 (fs)).The normal modes plot
for the same system is included in Figure 2.2 (on the right).
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Fig. 2.4. On the left: Energy drift for Verlet-I/r-RESPA/Impulse applied to a flexible protein,
2mlt, at 300 K. Each point represents a 10 ns MD simulation with a step size ∆t given by the x-axis
and an inner step size δt equal to 1/3 of outer step size. PME is used for Coulomb force evaluation.
The peaks at step sizes of ∆t = 3.00, 3.27, 3.78 fs, show 3:1 instability. On the right: The periods of
the fastest normal modes from a 200 ps simulation of the same system with inner time step of 1 fs
(at 300K).

3.27, and 3.78 fs, there are unstable resonances, which correspond to one third of the
periods of O-H, N-H, and C-H stretching, respectively.

2.6.4. Rigid water/2mlt at room temperature. Finally, we performed sim-
ulations of the solvated 2mlt system where the bond lengths of all the bonds of
polar hydrogen in the protein and the water molecules are constrained using SHAKE
algorithm. The results are shown in Figure 2.5 in which each point represents a
500 ps simulation. PME is used for Coulomb force evaluation. Simulations with outer
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Fig. 2.5. Upper left: Energy drift for Verlet-I/r-RESPA/Impulse applied to the explicitly
solvated 2mlt system, at 300 K. Each point represents a 500 ps MD simulation with a step size ∆t
given by the x-axis and an inner step size δt in the range of 0.82 to 1 fs. Upper right: The periods
of the fastest normal modes from a 200 ps simulation of the same system with inner time step of
1 fs (at 300K). Lower left, lower middle, and lower right are the zoom-ins of the plot on the upper
left. The bonds of polar hydrogens in the protein, the O-H bonds and H-O-H angles in water are
made rigid using the SHAKE method. It is hard to make any specific identifications of nonlinear
resonance just from these figures because the remaining modes are continuous. Most likely these
drifts correspond to the combined effects of 4:1 and 3:1 resonances.

time step greater than 4 fs are unstable. It is hard to make any specific identifica-
tions of nonlinear resonance just from these figures because the remaining modes are
continuous. Most likely these drifts correspond to the combined effects of 4:1 and
3:1 resonances associated with the remaining modes including angle bending, C=C
stretching, and some of the nonbonded interactions.

Note that simulations may become unstable even for step sizes larger than the
ones that just excite the nonlinear instabilities. Examples include the last few data
points in Figure 2.3 with 3.3363 < ∆t ≤ 3.8 (fs) and the last few data points in
Figure 2.4 with ∆t > 3.8 fs.

3. Analysis procedure. Given here is a procedure for analyzing the stability
of a reversible symplectic map, which extends the analysis of [35].

3.1. Assumptions. Let yn+1 = M(yn) be the map of interest. In the present
context M depends on a step size parameter h, so we may at times write Mh(y)
instead of M(y). Reversible means that RM(RM(y)) = y, where R = diag(1,−1).
Most practical reversible symplectic integrators, including simple implicit ones [41],
can be expressed

M(y) = RN−1(RN(y)),(3.1)
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where N(y) = Nh/2(y) is itself an area-preserving map.
2 It is easily verified that

M(y) is indeed reversible. Given here are the stability conditions for this important
special case of reversible maps in terms of the simpler map N(y).

The analysis is valid only in some neighborhood of a fixed point y∗ = M(y∗) of
the map. We assume that the Jacobian matrix M ′(y∗) is power-bounded, which is
necessary for stability. Also assume that y∗ = (q∗, 0), which will be the case except
possibly for values of h so large so as not to be of practical interest (see Appendix A,
Proposition A.1).

3.2. Procedure.
Step 1. Express

N(y) = N(y∗) +
[

a11 a12
−a21 a22

]
(y − y∗) +O(‖y − y∗‖2).(3.2)

For stability it is necessary that either 0 < a11a22 < 1 or a11 = a22 = 0 or a12 =
a21 = 0 (see Appendix A, Proposition A.2). The symplectic property implies that the
determinant a11a22 + a12a21 = 1.

Step 2. Choose α �= 0, β �= 0 so that the map
NY(Y ) = diag(α, 1/α) (N(y

∗ + diag(β, 1/β)Y )−N(y∗))(3.3)

satisfies

NY(Y ) =

[
γ σ
−σ γ

]
Y +O(‖Y ‖2),(3.4)

where σ2 + γ2 = 1. This can be done as follows (see Appendix A, Proposition A.3):

α =

(
a21a22
a11a12

)1/4

, β =

(
a12a22
a11a21

)1/4

if 0 < a11a22 < 1,(3.5)

α =

(
a21
a12

)1/2

β if a11 = a22 = 0,(3.6)

α =

(
a22
a11

)1/2
1

β
if a12 = a21 = 0.(3.7)

Step 3. Express the map NY(Q,P ) in complex form as

Nz(z, z̄) = µz + iµr(z, z̄),(3.8)

where z = Q+ iP , µ = γ − iσ, and
r(z, z̄) = c1z

2 + 2c̄1zz̄ + c2z̄
2 + c3z

2z̄ + c4z̄
3 +UTs.(3.9)

The UTs (unimportant terms) are defined to be the z3 term, the zz̄2 term, and those
of degree 4 or more. This can always be done (see Appendix A, Proposition A.4).
Express cj = aj + ibj , where aj and bj are real, and define

a = 2a1,(3.10)

c = 2a2,(3.11)

f = 2a3 − 12a1b1 + 4a2b2,(3.12)

g = 2a4 + 4a2b1 + 4a1b2.(3.13)

2For conventional methods the momentum reversal RNh/2(Ry) is identical to the time reversal

N−h/2(y) and hence RN−1
h/2

(Ry) is the same as the adjoint, N−1
−h/2

(y) [13].
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Conclusion. (See Appendix A for proof.) Let λ = µ2.
1. Third order resonance. Suppose λ3 = 1 but λ �= 1. The map is stable at
equilibrium if c = 0 and −σf − 3γa2 �= 0, and it is unstable if c �= 0. Hence,
third order resonance is normally unstable.

2. Suppose λ3 �= 1. Let
F = −σ(4γ2 − 1)f − 3γ(4γ2 − 1)a2 − γ(4γ2 − 3)c2,(3.14)

G = −σ(4γ2 − 1)g + 2γac.(3.15)

(a) Fourth order resonance. Suppose λ4 = 1. The map is stable at equilib-
rium if |G| < |F |, and it is unstable if |G| > |F |.

(b) Suppose λ4 �= 1. The map is stable at equilibrium if F �= 0.
4. Application to multiple time stepping. We apply the analysis procedure

just outlined to a nonlinear model problem to obtain the nonlinear stability conditions
on multiple time stepping algorithms.

4.1. The map. Assume a nonlinear model problem with potential energy given
by

U(q) =
1

2
Ω2q2︸ ︷︷ ︸

oscillate

+
1

2
Aq2 +

1

3
Bq3 +

1

4
Cq4︸ ︷︷ ︸

kick

+O(q5),(4.1)

where the splitting between the oscillate and kick step for Verlet-I/r-RESPA/Impulse
is done as indicated.

The discretization of this problem using the first half of Verlet-I/r-RESPA/Impulse
is given by the following:

1
2 kick:

p+0 = p− h

2
(Aq +Bq2 + Cq3) +O(q4).(4.2)

1
2 oscillate: Let s

′ = sin hΩ
2 and c′ = cos hΩ

2 ; we have[
q1/2
p1/2

]
=

[
c′ s′

Ω−Ωs′ c′

] [
q
p+0

]
.(4.3)

4.2. Main result. Let λ = µ2, where µ = γ − iσ in which

γ =



(
1− h

2
s′
Ωc′A

)1/2
c′, c′ �= 0,

0, c′ = 0,

and

σ =



(
1 + h

2
c′
Ωs′A

)1/2
s′, s′

Ω �= 0,
0, s′

Ω = 0.

We assume that either −(s′)2 < hs′c′
2Ω A < (c′)2, or s′

Ω = A = 0 or c′ = A = 0.
These assumptions are necessary to avoid linear instability at half the shortest period;
cf. [40].

Applying the nonlinear instability analysis of section 3 we obtain the following
nonlinear stability conditions:
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1. Third order resonance. Suppose λ3 = 1 but λ �= 1. The map is stable at
equilibrium if B = 0 and C �= 0, and it is unstable if B �= 0. This condition
for stability is as stringent for MTS as it is for leapfrog, and thus Verlet-I/r-
RESPA/Impulse is unstable in practice. This instability is confirmed by the
numerical results in section 2.

2. Fourth order resonance. Suppose λ = e−iπ/2. The map is stable at equilib-
rium if C < 0 or C > 2hB2s′c′/Ω. It is unstable if 0 < C < 2hB2s′c′/Ω.
Thus, Verlet-I/r-RESPA/Impulse may or may not be stable at the fourth
order resonance. This fourth order resonance is observed in our numerical
experiments, although our experiments are not conclusive regarding whether
this is an unstable nonlinear resonance.

4.3. Discussion. The case Ω→ 0 and A = ω2 gives the leapfrog result

C >
2

ω2
B2.(4.4)

To assess the implication of the stability condition for 4:1 resonance, consider two
particles separated by a distance r for which the fast force is harmonic and the slow
force is electrostatic:

U(r) =
1

2
Ω2(r − r0)

2 + kr−1.(4.5)

Assume r0 > 0 and that there is a stable equilibrium at r = r∗ > 0. Writing r = r∗+q,
we have

U(r∗ + q) = U(r∗) +
1

2
Ω2q2 + kr−3

∗ q2 − kr−4
∗ q3 + kr−5

∗ q4 +O(q5),(4.6)

which yields

A = 2kr−3
∗ , B = −3kr−4

∗ , C = 4kr−5
∗ .(4.7)

The condition given for stability becomes

k < 0 or h2k2r−3
∗
sinhΩ

hΩ
<
4

9
k,(4.8)

and the above condition is satisfied if

h2kr−3
∗ <

4

9
.(4.9)

This relation can be interpreted in terms of the error due to the finite step size h used
to sample the slow force. From [24, eq. (10)] it follows that discretization introduces
an error 1

24h
2(−kr−2

∗ )2 in the potential energy, and comparing this to the potential
energy kr−1

∗ itself we get the quantity estRelErr = 1
24h

2kr−3
∗ . With this definition

the condition for stability can be expressed

estRelErr <
1

54
,(4.10)

which is satisfied either if the two particles are oppositely charged or if cutoffs are
being chosen to yield reasonable accuracy. Neglected is the fact that in simulations
of liquids, where particles can move closer together, the slow potential is defined as
the product of the actual potential times times a switching function. The stability
condition for 4:1 resonance is not satisfied for typical switching functions.
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4.4. Proof of main result.
Step 1. (4.3) can be rewritten as[

q1/2
p1/2

]
=

[
c′ − h

2
s′
ΩA s′

Ω

−Ωs′ − h
2 c

′A c′

]([
q
p

]
− h

2

[
0
1

]
(Bq2 + Cq3)

)
+ O(q4).(4.11)

The elements of the matrix determine the linear stability condition stated in the
result.

Step 2. In the case of −(s′)2 < hs′c′
2Ω A < (c′)2,

α =

(
(Ωs′ + h

2 c
′A)c′

(c′ − h
2
s′
ΩA) s

′
Ω

)1/4

,(4.12)

β =

(
s′
Ω c′

(c′ − h
2
s′
ΩA)(Ωs′ + h

2 c
′A)

)1/4

.(4.13)

In the case of s′
Ω = A = 0 or c′ = A = 0,

α = Ω1/2, β = Ω−1/2.(4.14)

With these definitions α and β have removable singularities as functions of h when
A = 0. From (3.2)–(3.4) and (4.12)–(4.14) we calculate

γ =



(
1− h

2
s′
Ωc′A

)1/2
c′, c′ �= 0,

0, c′ = 0,
(4.15)

and

σ =



(
1 + h

2
c′
Ωs′A

)1/2
s′, s′

Ω �= 0,
0, s′

Ω = 0.
(4.16)

From (3.2)–(3.4) and (4.11), we get

[
Q1/2

P1/2

]
=

[
γ σ
−σ γ

]([
Q
P

]
− h

2

[
0
β

]
(β2BQ2 + β3CQ3)

)
+O(Q4).

(4.17)

Step 3. With µ = γ − iσ and z = Q+ iP, we have

Q =
1

2
(z + z̄).(4.18)

and

z1/2 = µ (z − ihφ(z, z̄)) + UTs,(4.19)

where

φ(z, z̄) =
β3

8
Bz2 +

β3

4
Bzz̄ +

β3

8
Bz̄2 +

3β4

16
Cz2z̄ +

β4

16
Cz̄3,(4.20)
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whence

c1 = −h

8
β3B, c2 = −h

8
β3B, c3 = −3h

16
β4C, c4 = − h

16
β4C,(4.21)

and

a = −h

4
β3B, c = −h

4
β3B, f = −3h

8
β4C, g = −h

8
β4C.(4.22)

Conclusions. Letting λ = µ2 and performing analyses for the cases λ3 = 1
and λ3 �= 1, we obtain the main result. Note that with regard to the fourth order
resonance, considering only the case where λ = e−iπ/2, for which σ = γ =

√
2/2,

stability of the map at equilibrium requires |C + hβ2B2| < |3C − hβ2B2|, where
β2 = s′c′

Ωσγ .

For the case λ3 �= 1 and λ4 �= 1, the map is stable at equilibrium if F �= 0, where

F =
1

8
hβ4

(
3σ(4γ2 − 1)C − γ(8γ2 − 3)hβ2B2

)
.(4.23)

5. Discussion. In protein simulations, there are possibly several other factors
that may also contribute to instability. Examples include difficulties in matching
the cutoff radii for the short-/intermediate-/long-range forces for Coulomb interac-
tions in Ewald splitting [3, 4, 45, 34] and group switching functions, e.g., when the
group radii (intermediate or long) matches a critical distance between two neighboring
groups and many others related to the arbitrary potential breakup [32]. Nonetheless,
the step size–related nonlinear instabilities should not be neglected. In particular, al-
though 4:1 nonlinear instability could be eliminated by designing a switching function
that satisfies the inequality equation (4.9), 3:1 nonlinear instability is a general phe-
nomenon. In some applications, accuracy limits the time step, but in the important
cases shown here, the time step is limited by stability.

Appendix A. Justification of analysis procedure. This is a simplification
of stability conditions in [35] for the case

Mh(y) = RN−1
h/2(RNh/2(y)),(A.1)

where N(y) = Nh/2(y) is itself an area-preserving map.
Proposition A.1. Assume y∗h can be obtained uniquely by analytical continua-

tion from y∗0 = (q
∗
0 , 0). Then p∗h = 0.

Proof. We show that Ry∗δ is also a fixed point for 0 ≤ δ ≤ h. Since y∗δ is a fixed
point of the map Mδ, we have

y∗δ = RNδ
−1(RNδ(y

∗
δ )).(A.2)

Multiplying both sides by R and then applying the map Nδ, we have

Nδ(Ry∗δ ) = RNδ(y
∗
δ ),(A.3)

following which we have

Mδ(Ry∗δ ) = RNδ
−1(RNδ(Ry∗δ )) = Ry∗δ .(A.4)

Since Ry∗0 = y∗0 and y∗δ does not bifurcate for 0 ≤ δ ≤ h, we have

Ry∗δ ≡ y∗δ ,(A.5)
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which implies p∗δ ≡ 0.
Note that analytical continuation can be done for δ > 0 as long as M ′

δ(y
∗
δ ) �= I,

assuming consistency of Mδ, U ′(q∗0) = 0, and U ′′(q∗0) > 0, where U refers to the
potential energy as given by (4.1).

Proposition A.2. Let N ′(y∗) = [ a11 a12−a21 a22
] be the Jacobian matrix of the map

N at the fixed point y∗. For stability of Mh, it is necessary that either 0 < a11a22 < 1
or a11 = a22 = 0 or a12 = a21 = 0.

Proof. Multiplying both sides of (A.1) by R and then applying the map N , we
have

N(RMh(y)) = RN(y).(A.6)

Forming the Jacobian matrix on both sides at the fixed point y∗, we have

N ′(Ry∗)RM ′(y∗) = RN ′(y∗),(A.7)

which leads to

M ′(y∗) = RN ′(y∗)−1
RN ′(y∗).(A.8)

The symplecticness property of N implies a11a22 + a12a21 = 1. The inverse of the
Jacobian is given by

N ′(y∗)−1
=

[
a22 −a12
a21 a11

]
.(A.9)

Thus, we have

M ′
h(y

∗) =
[

a11a22 − a12a21 2a12a22
−2a11a21 a11a22 − a12a21

]
.(A.10)

Because M ′(y∗) is power bounded and detM ′(y∗) = 1, it has two eigenvalues
λ, λ̄ of unit modulus3 and hence |trace(M ′(y∗))| ≤ 2. If the trace is less than 2 in
magnitude, then 0 < a12a21 < 1. If its magnitude is 2, then power-boundedness
implies that the off-diagonal elements of M ′(y∗) are both zero, which further implies
that a11 = a22 = 0 or a12 = a21 = 0.

Proposition A.3. Let

NY(Y ) = D1(N(y
∗ +D2Y )−N(y∗)),(A.11)

where D1 = diag(α, 1/α) and D2 = diag(β, 1/β). We can choose D1 and D2 so that
N ′
Y(0) is a rotation matrix and so that MY(Y ) = RN−1

Y (RNY(Y )) is stable at Y = 0
if and only if M(y) is stable at y = y∗h.

Proof. First,

y∗ = RN−1(RN(y∗)),(A.12)

which implies

N(Ry∗) = RN(y∗).(A.13)

3The eigenvalues of M ′(y∗) are λ1,2 = a11a22 − a12a21 ± 2i
√
a11a12a21a22.
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Hence, since y∗ = (q∗, 0), we have

RN(y∗) = N(Ry∗) = N(y∗).(A.14)

Multiplying both sides of (A.11) by D−1
1 , we have

N(y∗ +D2Y ) = D1
−1NY(Y ) +N(y∗).(A.15)

From the above we have

Y = D2
−1(N−1(D1

−1NY(Y ) +N(y∗))− y∗),(A.16)

which implies that the inverse of the map NY(Y ) is given by

NY
−1(Y ) = D2

−1(N−1(D1
−1Y +N(y∗))− y∗).(A.17)

Then

MY(Y ) = RN−1
Y (RNY(Y ))

= RD−1
2 (N−1(D−1

1 (RD1︸ ︷︷ ︸
cancel

(N(y∗ +D2Y )−N(y∗))) +N(y∗)︸ ︷︷ ︸
cancel

)− y∗).(A.18)

Because D−1
1 RD−1

2 = R and (A.14), this becomes

MY(Y ) = RD−1
2 (N−1(RN(y∗ +D2Y ))− y∗)(A.19)

or

MY(Y ) = D−1
2 M(y∗ +D2Y )− y∗,(A.20)

which is a symplectic transformation, y = y∗ + D2Y , of the map M . A symplectic
transformation preserves the stability property. Finally

N ′
Y(0) = D1N

′(y∗)D2,(A.21)

which can be verified to be a rotation matrix.
Proposition A.4. Let

NY(Y ) =

[
γ σ
−σ γ

]
Y +O(‖Y ‖2)(A.22)

be symplectic. Let z = Q+ iP, and let µ = γ − iσ. Then the map becomes

z �→ Nz(z, z̄)
def
= µz + iµr(z, z̄),(A.23)

where

r(z, z̄) = c1z
2 + 2c̄1zz̄ + c2z̄

2 + c3z
2z̄ + c4z̄

3 +UTs.(A.24)

Proof. See [35, eq. (2.15)].
Proof of conclusion. Perform a symplectic change of variables X = NY(Y ) and

the map becomes

X �→ MX(X)
def
= NY(RN−1

Y (RY )),(A.25)
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which can be expressed as X1 =MX(X0), where

X1 = NY(X1/2), X0 = RNY(RX1/2).(A.26)

The new map MX has the same stability properties at the origin as the map MY, and
it is also reversible. It is expressed in complex form as

z1 = Nz(z, z̄), z0 = Nz(z̄, z) = N̄z(z, z̄),(A.27)

where N̄z is Nz with its coefficients complex conjugated. The map MX satisfies the
hypotheses of Lemma 4.2 of [35] with λ = eiφ = µ2, so its complex equivalent has the
form

z1 = µ2z0 + iµL(µz0, µ̄z̄0),(A.28)

where

L(z, z̄) = az2 + 2azz̄ + cz̄2 + (f + i(a2 − c2))z2z̄ + gz̄3 +UTs(A.29)

and a, c, f , g are real. Substituting (A.27) into (A.28) gives

Nz(z, z̄) = µ2N̄z(z, z̄) + iµL(µN̄z(z, z̄), µ̄Nz(z̄, z)).(A.30)

From (A.23), we have

N̄z(z, z̄) = µ̄z − iµ̄r̄(z, z̄),(A.31)

and substituting both equations into (A.30) gives

r(z, z̄) = −r̄(z, z̄) + L(z − ir̄(z, z̄), z̄ + ir(z̄, z)).(A.32)

Expanding this and using (A.29) gives

L(z, z̄) = r(z, z̄) + r̄(z, z̄) + iψ(z, z̄) + UTs,(A.33)

where

ψ(z, z̄) = 2 (a(z + z̄)r̄(z, z̄)− (az + cz̄)r(z̄, z)) .(A.34)

Using (A.24) and (A.29), we equate coefficients to get

a = 2a1,(A.35)

c = 2a2,(A.36)

f = 2a3 − 12a1b1 + 4a2b2,(A.37)

g = 2a4 + 4a2b1 + 4a1b2.(A.38)

The procedure conclusion follows from Theorem 4.3 of [35] using eiφ/2 = µ =
γ − iσ.
Appendix B. Additional details of numerical experiments. Here we pro-

vide additional details of the numerical experiments, including the system parameters
and the energy drift.
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B.1. Experimental system parameters. The flexible water system used in
the simulations, equilibrated at either 0.015K or 300K, is based upon the TIP3P
model [21], with flexibility incorporated by adding bond stretching and angle bending
harmonic terms; cf. [23, p. 184]. By equilibrating we avoid highly improbable values
of different contributions to energies. Experiments such at those in [8] suggest that
flexible water models are particularly sensitive to destabilizing artifacts in numerical
integrators. This is a system that has fastest motions with periods of around 10 fs.
For each simulation a trace of the following information was generated: all of the
components of the energy, positions (trajectories), velocities, and forces.

The potential energy function for an electrostatic interaction is given by

U electrostatic
ij = C

qiqj
xij

SWC1(xij),(B.1)

where xij = ‖xj − xi‖ is the distance between atoms i and j, qi is the charge for atom
i, and C = 332.0636 kcalmol−1K−1. Coulomb energies were split into fast and slow
multiplying by the following C1 switching function:

C 1(3rij) =

{
1− ( 32 |3rij |r12 − 1

2 |3rij |3)r1−3 if |3rij | ≤ r1,

0 if |3rij | > r1,
(B.2)

where r1 is the cutoff distance where the function value becomes zero. The cutoff
used for our test system was 6.5 Å.

The energy for a Lennard–Jones interaction is

ULennard−Jones
ij = 4εij

((
σij

xij

)12

−
(
σij

xij

)6
)
SWC2(xij),(B.3)

where εij and σij are the Lennard–Jones energy minimum and crossover point (where
the Lennard–Jones function is zero).

Lennard–Jones energies were split using the following C2 switching function:

C 2(3rij) =



1 if |3rij | ≤ r0,

(|3rij |2 − r1
2)2(r1

2 + 2|3rij |2 − 3r02)
(r1

2 − r0
2)3

if r0 ≤ |3rij | < r1,

0 if |3rij | > r1,

(B.4)

where r1 is the distance where the function value becomes zero, and r0 is that where
it becomes active. The values in our experiments were 6.5 Å and 0.1 Å, respectively.

The energy for a bond interaction is

Ubond
k =

1

2
KB(xij − lk)

2,(B.5)

where KB is a bond force constant and lk is a reference bond length between atoms
i and j for constraint k. Finally, the energy for an angle interaction is

Uangle
k =

1

2
KA(θk − θ0)

2,(B.6)

where KA is an angle force constant, and θk and θ0 are the current value of the angle
and the reference angle for angle constraint k.

For flexible water, KA = 55 kcalmol−1 degrees2, KB = 450 kcalmol−1 Å2, qO =
0.417 e, qH = −0.834 e, lO−H = 0.957 Å, and θ0 = 104.52 degrees. The Lennard–
Jones parameters are σH−H = 0.4 Å, σO−O = 3.1506 Å, σO−H = 1.75253 Å, εH−H =
0.046 kcalmol−1, εO−O = 0.1521 kcalmol

−1, εO−H = 0.08365 kcalmol
−1.
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Fig. B.1. Block-averaged drift of total energy for 500 ps of molecular dynamics simulation of
10 Å radius of water using Verlet-I/r-RESPA/Impulse. It illustrates the 3:1 nonlinear resonance
at a third of the fastest period near zero K. The percent relative drift of total energy of the three
simulations is 0.01%, 0.82%, and 0.01% for ∆t = 3.20 fs, ∆t = 3.33 fs, and ∆t = 3.50 fs, respectively.
The curves have been shifted for clarity with two steps. The curve for ∆t = 3.33 fs is shifted by
−0.002 kcal/mol and the curve for ∆t = 3.50 fs is shifted by −0.006 kcal/mol. These negative shifts
help to bring the three curves to the same starting point. Then the curve for ∆t = 3.33 fs is shifted
by 0.00006 kcal/mol and that for ∆t = 3.50 fs is shifted by 0.00012 kcal/mol.

B.2. Detailed view of energy drift. We show the details of the energy drift
by plotting the block-averaged energy output to visualize the nonlinear instabilities
for simulations at near zero temperature and room temperature; see Figures B.1, B.2,
B.3, and B.4. The resonance at a given step size shows itself as an abrupt increase
in the drift with respect to neighboring values of the step size. In the absence of
resonance the energy would be conserved.

B.3. Flexible water simulation with PME. Simulations of flexible waters
presented in Figures 2.2 and 2.3 use the direct method for Coulomb force evaluation
and use vacuum boundary conditions. We also performed simulations of flexible water
using the PME method for Coulomb force evaluation. The 3:1 instability is clearly
shown in Figure B.5 at outer step size ∆t = 3.27 fs.
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Fig. B.2. Same as Figure B.1 except that it shows evidence of a 4:1 nonlinear resonance. The
percent relative drift of total energy of the three simulations is 0.004%, 0.119%, and −0.038% for
∆t = 2.43 fs, ∆t = 2.57 fs, and ∆t = 2.70 fs, respectively. The curve with ∆t = 2.57 fs is shifted by
−0.0001 kcal/mol and the curve with ∆t = 2.70 fs is shifted by −0.0021 kcal/mol. These negative
shifts help to bring the three curves to the same starting point. Then, the curve with ∆t = 2.57 fs is
shifted by 0.000005 kcal/mol and the curve with ∆t = 2.70 fs is shifted by 0.000010 kcal/mol.
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Fig. B.3. Same as in Figure B.1 except that the temperature here is 300K. The percent relative
drift of total energy of the three simulations is 0.70%, 5.42%, and 1.07% for ∆t = 3.10 fs, ∆t =
3.33 fs, and ∆t = 3.50 fs, respectively. The curves have been shifted for clarity: the curve with
∆t = 3.33 fs is shifted by 5.0 kcal/mol and the curve with ∆t = 3.50 fs is shifted by 10.0 kcal/mol.
This shows evidence of the 3:1 nonlinear instability due to resonance.
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Fig. B.4. Same as in Figure B.3 except that it shows evidence of a possible 4:1 resonance.
The percent relative drift of total energy of the three simulations is 0.11%, 1.20%, and 0.24% for
∆t = 2.33 fs, ∆t = 2.40 fs, and ∆t = 2.47 fs, respectively. The curves have been shifted for clarity:
the curve with ∆t = 2.40 fs is shifted by 1.5 kcal/mol and the curve with ∆t = 2.47 fs is shifted by
3.0 kcal/mol.
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Fig. B.5. On the left: Same as in Figure 2.3 except that the inner step size is 1/3 of the outer
time step and PME is used in the Coulomb force evaluation. The peak at step size of 3.27 fs shows
3:1 instability. On the right: The periods of the fastest normal modes from a 200 ps simulation of
the same system with inner time step of 1 fs at 300K, in which the Coulomb force is evaluated using
the direct method.
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