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Abstract. Random walk methods are effective for solving linear partial differential equations in
many dimensions, especially those involving complex geometries. They are based on an equivalence
given by a Feynman–Kac formula between an expectation of a functional of a stochastic process
and the solution at a point of a partial differential equation. The drawback is that the error is
proportional only to the square root of the reciprocal of the number of trials. Efficiency depends
critically on variance reduction. A general strategy for doing this in the case of stochastic differential
equations is proposed by Milstein. The idea is to introduce a bias in the drift term and to exactly
compensate for this by unequal weighting of the trials. There is an optimal bias defined in terms of
the solution of the partial differential equation which reduces the variance to zero. In practice, an
approximation is used. This idea has been tested under the name “biased Brownian dynamics” on
the problem of calculating rate constants for diffusion-limited reactions. The approach is successful
in some cases but is less successful in more difficult cases due to the occasional occurrence of a
well-above-average weight. Proposed and tested here is a weight control algorithm, which greatly
enhances the effectiveness of biased Brownian dynamics.
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1. Introduction. Random walk methods are effective for certain calculations
expressed in terms of linear partial differential equations in many dimensions, espe-
cially for complex geometries. Such methods necessarily have an order of accuracy
of only 1/2 in terms of the number of trials Ntrials, which can be ameliorated only
by reducing the constant of proportionality by some type of variance reduction. A
general approach based on importance sampling is proposed and analyzed by Mil-
stein [13]. The idea is to introduce a systematic bias into the walk and perfectly
adjust for this with a suitable unequal weighting of the results of different random
walks. Milstein proves that there is an ideal bias that reduces the variance to zero.
In practice, the bias “force” has to be guessed or estimated. For example, the arti-
cle [24] on “biased Brownian dynamics” (BD) uses a heuristic choice of bias force. In
this way it obtains a sevenfold speedup for the calculation of the rate constant for
eucaryotic superoxide dismutase (SOD). However, when the same method is applied
to bacterial SOD, which has a rate constant of one-tenth less, the biased method
is no better than the unbiased method. The cause of the inaccuracy, it turns out,
is the occurrence of occasional much-larger-than-average weights, which significantly
increases the variance. The main contribution of this article is to introduce a weight
control mechanism for the biased BD algorithm, which makes the combined algorithm
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robust and more efficient, and to determine mathematically the ideal weight, which is
a guide to finding a good target weight for the weight control mechanism.

The basis for the random walk method is the relationship between a stochastic
differential equation (SDE) and the corresponding Fokker–Planck equation, which is a
linear partial differential equation (PDE) that governs the evolution of the probability
density of the SDE. With the use of the Feynman–Kac formula and its variant for
elliptic PDEs, many calculations have two equivalent formulations: one in terms of
the expectation of a functional of the paths of an SDE (a path integral) and the other
in terms of a functional of the solution of a PDE. An example, used to demonstrate
the ideas of this article, is the calculation of the rate constant for a diffusion-limited
reaction between an enzyme and a substrate whose motion is modeled by a system
of SDEs. The problem can be reduced to a reaction probability problem for an SDE
or an equivalent elliptic PDE, known as the Smoluchowski equation. An overview of
SDEs, random walk methods for PDEs, and the enzyme–substrate reaction problem
is given in section 2.

The reaction probability obtained from a BD simulation is the expectation of a
random number ζ. The statistical error is proportional to

√
Varζ/Ntrials, where Ntrials

is the number of simulated trajectories. For a given statistical error, the cost Ntrials

is proportional to Varζ. The reaction probability is generally very small, especially
for high-dimensional problems because of the entropy barrier. Standard BD rarely
encounters reactions, thus resulting in a large variance relative to the expectation,
and a very large Ntrials is required to obtain acceptable results.

Variance reduction methods for stochastic simulations based on the work of Mil-
stein [13] and Wagner [20, 21] are discussed in detail in the book by Kloeden and
Platen [9]. Milstein introduces an additional drift term in the SDE, which is the same
as doing a Girsanov transformation to the underlying probability measure. Wagner
derives unbiased estimators for functional integrals of stochastic process based on the
general principles of Monte Carlo integration. These methods are used by researchers
in other areas, such as Melchior and Öttinger in [10, 11], to determine hydrodynamic
properties for polymers, and Zuckerman and Woolf in [25], to calculate conformational
transition rates. Another, more recent technique for variance reduction is the method
of control variates. A recent and readable account comparing importance sampling
to control variates is found in [12].

In the context of rate constant calculations, the weighted ensemble Brownian
dynamics (WEBD) method of Huber and Kim [7] achieves variance reduction by
maintaining an ensemble of paths, or trajectories. Our method—biased BD [24]—
is motivated by the desire to find a streamlined alternative to the WEBD method,
which avoids any coupling between trajectories; hence, biased BD is as embarrassingly
parallel as standard BD. It is an adaptation to elliptic PDEs of the importance sam-
pling formalism of Milstein [13] for parabolic PDEs. (It would be interesting to know
how this might compare to the method of control variates in the case of stationary
problems.)

Section 3 introduces and motivates the biased BD algorithm. It proves that with
a biasing force present, the expectation of the weighted exit value gives the unbiased
estimate to the reaction probability. Also, it introduces the optimal bias force and
proves that the variance of the weighted exit value is zero under the optimal bias
force.

Section 4 introduces the weight control algorithm for biased BD, which is needed
to make biased BD robust and more efficient. It is proved that under the optimal
bias force, the weight of a “particle” in configuration space is a deterministic function
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of coordinates and does not depend on the path it traverses. This ideal weight under
the optimal bias force is not practical to calculate, but a rough approximation can be
calculated and used as a target weight for the weight control algorithm. If the weight
of the particle exceeds a prescribed multiple of the target weight, then the particle is
split into two and the sum of the weighted exit values is used. If the particle weight
becomes less than a prescribed fraction of the target weight, with equal probability
either the weight is doubled or the particle is destroyed. This method of control is
from [5]. The WEBD method has a more elaborate mechanism that effects weight
control.

Finding the optimal bias force or ideal weight is as hard as solving the reac-
tion probability problem. Both the bias force for biased BD and the target weight
for weight control are constructed from an approximation to the solution u(x) of
the Smoluchowski equation. A method for obtaining approximate solutions is given
in [23, 22]. The method is to approximate u(x) by û(ξ(x)), where ξ(x) is a reac-
tion coordinate defined for every configuration. The PDE for u(x) is converted to
a two-point boundary value problem for û(ξ) based on the variational form of the
boundary value problem, and û(ξ) is calculated by a Monte Carlo calculation and a
one-dimensional integration.

Section 5 gives the results of experiments demonstrating the effectiveness of weight
control. Experiments with E. coli SOD show speedups of 4.6 and 5.1. Experiments
with a difficult artificial problem used in [7] show speedups of 55 and 31. The perfor-
mance improvement is partly due to a decrease in the average duration of a trajectory
and partly due to a reduction of variance.

2. Random walk methods. The underlying connection between SDEs and
PDEs enables the random walk method to solve PDEs. This section reviews some
helpful mathematical definitions and formulas for SDEs and the relationship between
SDEs and PDEs. Most of the material here can be found in typical books on SDEs,
such as [19, 4, 9, 16].

2.1. Review of SDEs. An N -dimensional canonical Wiener process W (t) =
W (t, ω), t ≥ 0, ω an outcome from a sample space, is defined as a random process
with the following properties:

1. W (0) = 0.
2. For any integer k, reals 0 < t1 < t2 < · · · < tk, and x1, x2, . . . , xk ∈ R

N , the
probability that W (ti) ∈ [xi, xi + dxi] for all i = 1, 2, . . . , k is

p(t1, 0, x1)p(t2 − t1, x1, x2) · · · p(tk − tk−1, xk−1, xk)dx1dx2 · · ·dxk,

where

p(t, x, x′) = (2πt)−N/2 exp

(
−(x− x′)T(x− x′)

2t

)
.

3. For any outcome ω, W (t, ω) (a function R
+ → R

N ) is continuous with respect
to t.

A Wiener process W (t) can be viewed as a family of Gaussian random variables
parameterized by t having

E(W (t)) = 0, E(W (t)W (s)T) = min(s, t)I,

where I is the N × N identity matrix. Computationally, a Wiener process can be
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realized at a finite set of points 0 = t0 < t1 < t2 < · · · < tnsteps by W (tn)−W (tn−1) =√
tn − tn−1Z

n, where Zn is a vector of independent standard Gaussian distributed
random numbers, for which the probability density function (PDF) is

pg(z) = (2π)−N/2 exp

(
−1

2
zTz

)
.(2.1)

A single standard Gaussian random variable has mean 0 and variance 1.
A time homogeneous SDE has the form

dX(t) = a (X(t)) dt + B (X(t)) dW (t),(2.2)

where X(t) is an N -dimensional stochastic process, a(x) is an N -vector of real func-
tions, B(x) is an N × M matrix of real functions, and W (t) is an M -dimensional
canonical Wiener process. In this article, the Ito interpretation is used for (2.2),
which for simplicity can be treated as the dt → 0 limit of the Euler–Maruyama
scheme applied to (2.2):

X(t + dt) −X(t) = a (X(t)) dt + B (X(t)) (W (t + dt) −W (t)).(2.3)

Note that on the right-hand side, a(x) and B(x) are evaluated at time t. Another
choice is to evaluate them at t+dt/2, which results in the Stratonovich interpretation
for the SDE.

Consider a function ϕ(t, x) ∈ C1,2(R × R
N ) (which means both ∂sϕ(t, x) and

∇x∇T
xϕ(t, x) are continuous functions, where ∇x denotes a column vector of partial

derivatives with respect to the components of x), and let Y (t) = ϕ(t,X(t)) be another
stochastic process. The chain rule for an SDE is different from the chain rule for an
ordinary differential equation (ODE). For an ODE, one needs only the first order
Taylor expansion for ϕ(t, x), namely, dY (t) = ∂tϕ(t,X(t))dt + ∇T

xϕ(t,X(t))dX(t).
However, the Ito interpretation of stochastic integrals leads to the Ito formula

dY (t) = ∂tϕ(t,X(t))dt + ∇T
xϕ(t,X(t))dX(t) +

1

2
(∇x∇T

xϕ(t,X(t))) : (dX(t)dX(t)T)

= (∂t + L(X(t)))ϕ(t,X(t))dt + (∇xϕ(t,X(t)))TB(X(t))dW (t),

(2.4)

where L(x) is the characteristic operator of (2.2),

L(x)u(x) =

(
a(x)T∇x +

1

2
B(x)B(x)T : ∇x∇T

x

)
u(x),(2.5)

and A : C means tr(ATC) for two matrices A and C. Here ∇x operates only on
the functions following the symbol; for example, ∇x does not operate on B(x)B(x)T.
Note the difference in the Ito formula is that dX(t)dX(t)T gives a first order term
B(X(t))B(X(t))Tdt, because formally dW (t)dW (t)T is equivalent to Idt, where I is
the M ×M identity matrix.

With the Ito formula, it is not hard to prove that for any function ϕ(t, x) ∈
C1,2(R × R

N )

lim
h↓0

1

h
(Es,xϕ(s + h,X(s + h)) − ϕ(s, x)) = (∂s + L(x))ϕ(s, x),(2.6)
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where Es,x denotes the expectation with respect to the probability law of the stochastic
process governed by (2.2) with initial condition X(s) = x. This is the reason that
L(x) is called the characteristic operator of (2.2). In some mathematics-oriented SDE
books such as [16], the characteristic operator is actually defined by (2.6). With this
equation, it is not hard to prove the formula for random walk methods in the next
subsection.

2.2. A Feynman–Kac formula for elliptic PDEs. The solutions of many
linear PDEs can be expressed as path integrals. Since path integrals are typically
computed numerically by random walk simulation, path integral methods are also
known as random walk methods.

A Dirichlet boundary condition is treated by stopping the random walk at the
boundary. A stopping time is a random time τ , which depends only on the history of
the trajectory up to time τ . A good example of a stopping time is the first exit time
from domain Ω, τΩ = inf{t : X(t) ∈ ∂Ω}. In the following, the first exit time τΩ will
be used as the stopping time.

The elliptic Dirichlet problem on domain Ω ⊂ R
N ,

−L(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ ∂Ω,
(2.7)

with L defined by (2.5), has the solution

u(x) = E0,xf(X(τΩ)),(2.8)

where X(t) satisfies (2.2). The expectation is a path integral. The stochastic process
defined by (2.2) induces a probability measure on the space of continuous functions
C(R+,RN ) much like the Wiener measure. The function space can be thought of as
a “path” space, where each path is a continuous function. The integrand of the path
integral is f(X(t)), which is a functional of the path X(t). In the following we see a
more general integrand for the path integral, but it is still a functional of the path.

The more general elliptic PDE on domain Ω ⊂ R
N ,

(−L(x) + q(x))u(x) = g(x), x ∈ Ω,

u(x) = f(x), x ∈ ∂Ω,
(2.9)

has the solution

u(x) = E0,x

(
f(X(τΩ)) exp

(
−
∫ τΩ

0

dt′q(X(t′))

)
(2.10)

+

∫ τΩ

0

dt g(X(t)) exp

(
−
∫ t

0

dt′q(X(t′))

))
.

This variant Feynman–Kac formula appears in [2].
It is worth mentioning that a Neumann boundary condition, the reflecting bound-

ary condition, can be treated easily by the bumping of a Brownian particle at the
boundary.

The representation in terms of path integrals is motivated by the relative simplic-
ity of computing them numerically. To do this, we generate paths or trajectories with
the probability density governed by (2.2) with specified initial condition and then
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compute the expectation. Generating trajectories requires discretizing (2.2) with a
finite step size. Similar to the forward Euler method for ODEs, the simplest numerical
method for SDEs is the Euler–Maruyama method (2.3), which we write as

Xn+1 = Xn + a(Xn)∆t +
√

∆tB(Xn)Zn+1,(2.11)

where Xn ≈ X(tn), tn+1 = tn + ∆t, and Zn+1 is a vector of M independent stan-
dard Gaussian random numbers. The term

√
∆tZn+1 realizes the Wiener increment

W (tn+1) − W (tn). In practice, the integration step size ∆t can vary. Of course,
there are many higher order numerical methods for generating trajectories, e.g., in
the books by Milstein [13] and Kloeden and Platen [9]. See also the excellent review
by Higham [6]. Better control of the random walk is possible using a lattice [2] or
exponential time-stepping [8].

2.3. A reaction probability problem. The techniques of this article and their
effectiveness are illustrated by the problem of calculating the probability of reaction
between a substrate and an enzyme for a diffusion-limited reaction. This probability
can be used to calculate the rate constant [14, 24].

Physics and geometry of the problem. The enzyme is modeled as a rigid
body at the origin and the substrate is composed of N spheres. The 3N Cartesian
coordinates of the centers of the spheres r1, r2, . . . , rN describe a configuration of the
substrate, which is represented by a column vector x of dimension 3N . The substrate
is treated as a Brownian particle in 3N -dimensional space. Configurations of the
substrate that are close to the enzyme in some prescribed sense constitute a set of
reacted configurations Ωrc, which is an open subset of R

3N , whose boundary ∂Ωrc

is the reaction surface. If the Brownian particle diffuses to the reaction surface, a
reaction happens and the motion terminates. A center of the substrate rc is chosen as
a possibly weighted average of ri’s. Let Ωb and Ωq be the subsets of R

3N containing
the configurations with |rc| ≤ b and |rc| ≤ q, respectively, where b and q are large
enough so that Ωrc ⊂ Ωb ⊂ Ωq. Their boundaries are called the b-surface and the
q-surface, respectively. The q-surface is also called the escape surface. The particle’s
movement is in the domain Ω = Ωq \Ωrc. A force vector F (x) of dimension 3N and a
3N × 3N symmetric positive definite diffusion tensor D(x) are defined in the domain
Ω. A function f(x) is defined on the boundary ∂Ω of Ω,

f(x) =

{
0 if x ∈ ∂Ωq,

1 if x ∈ ∂Ωrc.
(2.12)

Finally, kB is the Boltzmann constant and T the ambient temperature.
Define u(x) to be the probability that a particle starting from x reacts rather

than escapes. The problem of calculating u(x) has two equivalent formulations: the
expectation of an exit value for an SDE and the solution of an elliptic PDE. The
equivalence is based on that between (2.7) and (2.8) for the elliptic Dirichlet problem.

SDE definition of the reaction probability. The reaction probability u(x)
is the path integral

u(x) = E0,xf(X(τΩ)),(2.13)

where X(t) is a trajectory of the Brownian particle governed by the SDE [3]

dX =

(
(∇TD(X))T + D(X)

F (X)

kBT

)
dt +

√
2 D1/2(X)dW (t),(2.14)
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with initial condition X(0) = x, τΩ is the first exit time from domain Ω, E0,x is the
expectation with respect to the probability law for the random trajectory X(t), D1/2

is a matrix satisfying D1/2D
T
1/2 = D, and W (t) is a 3N -dimensional canonical Wiener

process.

PDE definition of the reaction probability. The reaction probability u(x)
is the solution of the following boundary value problem for the steady state Smolu-
chowski equation:

(
∇T

xD(x)∇x +
F (x)T

kBT
D(x)∇x

)
u(x) = 0, x ∈ Ω

u(x) = f(x), x ∈ ∂Ω.

(2.15)

When the force is conservative, a potential energy U(x) can be defined such that
F (x) = −∇U(x), and (2.15) can be transformed to the quite different form

exp
U(x)

kBT
∇T

xD(x) exp

(
−U(x)

kBT

)
∇xu(x) = 0.(2.15′)

Average reaction probability on the b-surface. The formula for a rate con-
stant is in terms of an average reaction probability on the b-surface. Given a distri-
bution pb(x) of initial values x on the b-surface, the problem is to find the average
ū(b) of reaction probabilities u(x) with respect to the distribution pb(x). The average
ū(b) is the expectation Ef(X(τΩ)), where f(X(τΩ)) is the exit value from domain Ω
for a trajectory whose starting point x is distributed on the b-surface with probability
density pb(x). This is illustrated in Figure 1.

Ω
Ω

Ωq | <= q: |rc

rc
b

b surface
1

q surface
0

Fig. 1. Trajectories begin on the b-surface and evolve until they reach either the reaction surface
Ωrc or the escape surface Ωq.

The density pb(x) [22] is such that the center rc has a uniform distribution on
the |rc| = b spherical surface and the other degrees of freedom have a Boltzmann
distribution.

Rather than solving the Dirichlet problem in (2.15) by a discretization method, we
use the random walk method given by (2.13) and (2.14). In the following, a variance
reduction method—biased BD—for the random walk method is derived and analyzed.
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3. Variance reduction using biased BD. The biased BD realization of the
Milstein importance sampling approach for (2.8) is derived here using a discrete for-
mulation as a starting point. Also, comparatively elementary proofs are given for the
fundamental results of Milstein.

3.1. Discrete biased BD. To motivate biased BD, we consider the reaction
probability problem. Typically the probability of reaction u(x) is very small, and a
large number of trajectories will yield only a small number of reactions. Hence, the
statistical error will be large relative to u(x). The idea of biased BD is (i) to introduce
an artificial bias force Fb(x) (in addition to the natural force F (x)) that increases the
probability of reaction, and (ii) to divide the exit value by the factor by which the
probability of the trajectory has been artificially inflated. Equivalently, the exit value
is multiplied by a weight, which is the reciprocal of the probability inflation factor.

The discrete dynamics equation (2.11) is, again,

Xn+1 = Xn + a(Xn)∆t + B(Xn)
√

∆tZn+1,

and for the reaction probability problem

a(x) = (∇TD(x))T + D(x)
F (x)

kBT
, B(x) =

√
2D1/2(x).

The addition of a bias force Fb(x) would add a term D(x)Fb(x)/(kBT ) to the drift
a(x). It is useful, however, to consider the bias force as a modification to the random
term and to write discrete biased BD as

Xn+1
b = Xn

b + a(Xn
b )∆t + B(Xn

b )
√

∆t
(
Zn+1 +

√
∆tc(Xn

b )
)
,(3.1)

where for the reaction probability problem the “bias vector”

c(x) = D1/2(x)TFb(x)/
(√

2kBT
)
.

The calculation of the weight, which is to be discussed shortly, is actually valid
for the more general discrete biased BD scheme

Xn+1
b = Xn

b + a(Xn
b )∆t + B(Xn

b )
√

∆tZn+1
b ,

where Zn+1
b is a random vector with an arbitrary PDF pb(z) instead of a standard

Gaussian pg(z). The special case (3.1) corresponds to

Zn+1
b = Zn+1 +

√
∆tc(Xn

b ), pb(z) = pg

(
z −

√
∆tc(Xn

b )
)
.(3.2)

Biased BD associates with each trajectory a weight, which is initially 1 and is
adjusted as the trajectory develops to compensate for bias. Let w0 = 1 and let
wn be the weight of a trajectory after the nth integration step. Consider the bias
introduced by step n + 1. A given value z of Zn+1

b will be more probable than it
should be by a factor pb(z)/pg(z). Therefore, the weight of the trajectory is divided
by pb(Zn+1

b )/pg(Z
n+1
b ) at step n + 1:

wn+1 = wnpg(Z
n+1
b )/pb(Zn+1

b ).(3.3)

Thus, the product of the weight factor pg(z)/pb(z) and the PDF pb(z) for Zn+1
b

preserves a Gaussian distribution, as illustrated by Figure 2. By taking into account
the weight for every integration step, the final statistical result of biased BD gives the
same expectation as standard BD.
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Standard BD Biased BD

Fig. 2. Biased BD weights the outcomes to compensate for the biased distribution.

3.2. Continuous biased BD. Let the step size ∆t → 0, and (3.1) becomes the
SDE

dXb(t) = a (Xb) dt + B (Xb) c (Xb) dt + B (Xb) dW (t).(3.4)

Define Λn = lnwn, the logarithm of the current weight of the particle, and let Λ(t)
be the continuous extension of Λn under the zero step size limit. Equations (3.3)
and (3.2) give

Λn+1 − Λn = ln(pg(Z
n+1
b )/pb(Zn+1

b ))

=
1

2

(
(Zn+1)TZn+1 − (Zn+1 +

√
∆tc(Xn

b ))T(Zn+1 +
√

∆tc(Xn
b ))

)
= −1

2
c(Xn

b )Tc(Xn
b )∆t− c(Xn

b )T
√

∆tZn+1.

Noting that
√

∆tZn+1 → dW (t) as ∆t → dt, we have

dΛ(t) = −1

2
c(Xb)Tc(Xb)dt− c(Xb)TdW (t).(3.5)

Combining (3.4) and (3.5) gives(
dXb

dΛ

)
=

(
a (Xb) + B (Xb) c (Xb)

− 1
2c(Xb)Tc(Xb)

)
dt +

(
B (Xb)
−c(Xb)T

)
dW (t).(3.6)

Initially, Xb(0) = x and Λ(0) = 0.
In fact, (3.6) can be set as the starting point of biased BD.1 The derivations in

the following subsection are based on this equation. The most important theoretical
results for biased BD are the following:

1. With a bias force present, the expectation of the suitably weighted exit value
gives the unbiased estimate of the reaction probability.

2. There is an optimal bias force under which the variance of the weighted exit
value is 0.

These results are stated more precisely as theorems in the following subsection.

1Milstein [13, Eq. (12.2)] uses w rather than Λ as the variable in the SDE. Equivalence of the
two formulations can be shown using the Ito formula.
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3.3. Variance of biased BD. The following theorem expresses the moments
of the weighted exit value as solutions of elliptic boundary value problems. We apply
this result to study the mean and the variance.

Theorem 1. Let uk(x) be the kth moment of the weighted exit value defined by

uk(x) = E0,x (f(Xb(τΩ)) exp Λ(τΩ))
k
,

where Xb(t), Λ(t) satisfies the biased BD (3.6), τΩ is the first exit time from domain
Ω = Ωq \ Ωrc, and f(x) is defined on ∂Ω. Then uk(x) satisfies the PDE(

L(x) − (k − 1)c(x)TB(x)T∇x +
1

2
(k − 1)kc(x)Tc(x)

)
uk = 0, x ∈ Ω,

with L(x) given by (2.5) and with boundary condition

uk = f(x)k, x ∈ ∂Ω.

Proof. First, the boundary condition is satisfied because when a particle starts
from a point x on the boundary, it exits immediately and the final weight is 1, which
gives weighted exit value f(x)k on the boundary.

Second, we show that uk(x) satisfies the given PDE. Let y = (xT, λ)T, Y (t) =
(Xb(t)T,Λ(t))T, fk(y) = (f(x) expλ)k, and ūk(y) = E0,yfk(Y (τΩ)). Because of the
Markov property of SDEs,

E0,yfk(Y (max{τΩ, h})) = E0,yEh,Y (h)fk(Y (max{τΩ, h})),

where h > 0 and Y (t) = Y (τΩ) for t ≥ τΩ. Equivalently,

ūk(y) = E0,yūk(Y (h)).

So by (2.6)

0 = lim
h↓0

1

h
(E0,yūk(Y (h)) − ūk(y)) = L̄(y)ūk(y),(3.7)

where L̄ is the characteristic operator, (2.5), of (3.6),

L̄(x, λ) = L(x) + c(x)TB(x)T∇x(1 − ∂λ) − 1

2
c(x)Tc(x)∂λ(1 − ∂λ),(3.8)

with L as the characteristic operator of the original equation (2.2). Also, we can see
from (3.6) that

ūk(x, λ) = ekλuk(x).(3.9)

The theorem follows from combining (3.7), (3.8), and (3.9).
The preceding theorem with k = 1 shows that the expectation, u(x) = u1(x), of

the weighted exit value f(Xb(τΩ)) exp Λ(τΩ) does not depend on the bias vector c(x).
This result is an assertion in Milstein’s book [13, p. 131] based on Girsanov’s theorem.

Also, this theorem with k = 2,(
L(x) − c(x)TB(x)T∇x + c(x)Tc(x)

)
u2 = 0,(3.10)
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characterizes the variance, u2(x) − u(x)2, of the weighted exit value, showing that it
depends on the bias vector. So it may be possible to reduce the variance by selecting
a suitable bias vector.

The following is equivalent to Theorem 12.1 in Milstein’s book [13].
Theorem 2. Assume f(x) > 0, x ∈ ∂Ω, and that (2.7) has a unique solution

u(x) > 0, x ∈ Ω. Then

c(x) = B(x)T∇x lnu(x)(3.11)

is the optimal bias vector and gives zero variance to the weighted exit value,

Var0,xf(Xb(τΩ))eΛ(τΩ) = u2(x) − u(x)2 = 0.

Proof. Substitute formula (3.11) for the optimal bias vector into (3.10), and we
have L2u2(x) = 0, where

L2 = L − (∇u(x))T

u(x)
B(x)B(x)T∇x +

(∇u(x))T

u(x)
B(x)B(x)T

(∇u(x))

u(x)
.

Using (2.7), it can be shown that for any twice differentiable function v(x)

L2uv = Luv − (∇u)TBBT∇v = uLv + vLu = uLv.
Define v = u2/u and we have

Lv =
1

u
L2uv =

1

u
L2u2 = 0, x ∈ Ω, v = f, x ∈ ∂Ω.

This has a unique solution v = u, so u2 = uv = u2 under the optimal bias vector, and
the variance u2(x) − u(x)2 is zero.

To apply this result to the probability reaction problem, we use B(x)=
√

2D1/2(x)

and c(x) = D1/2(x)TFb(x)/(
√

2kBT ) and thus obtain

Fb(x) = 2kBT∇x lnu(x).

The effect of having u(x) = 0 on the q-surface is that Fb(x) becomes infinitely repelling
as the q-surface is approached. Strictly speaking, Theorem 2 requires that the bound-
ary values f(x) be greater than 0. Generalization to the case where f(x) vanishes or
changes sign is given in [13, Remark 12.1]. Also given there is the generalization to
the more general Feynman–Kac formula given by (2.10).

Remark. It is possible to derive the optimal bias vector from discrete biased
BD (3.1). Let u∆t(x) be the expected exit value for unbiased discrete BD. By con-
sidering a single step, we get that

u∆t(x) =

∫
dz u∆t

(
x + a(x)∆t + B(x)

√
∆tz

)
pg(z).(3.12)

Let us postulate the existence of perfect PDFs pb(z) which for a trajectory starting
at x give an exit value that is u∆t(x) with probability 1. Then the expected exit value
after one step should be the same as that before the step:

(pg(Zb)/pb(Zb))u∆t(x + a(x)∆t + B(x)
√

∆tZb) = u∆t(x),

where Zb is a random variable with PDF pb(z). It is, indeed, possible for this to hold
identically for Zb by choosing

pb(z) = pg(z)u∆t(x + a(x)∆t + B(x)
√

∆tz)/u∆t(x).(3.13)

That this actually defines a PDF is ensured by (3.12). Equation (3.11) follows by
requiring that (3.13) hold asymptotically as ∆t → 0 for pb(z) = pg(z −

√
∆tc(x)).
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4. Weight control and optimal weight. A weight control mechanism is de-
scribed in the WEBD paper [7] involving a target weight which is dynamically deter-
mined. Here we use a static target weight and a different weight control algorithm.

4.1. Ideal weight. The theorem that follows shows that the weight satisfies

exp Λ(t) = u(x)/u(Xb(t))(4.1)

under the optimal bias vector. Note that exp Λ(t) is a deterministic function of coordi-
nates Xb(t) and does not depend on the path it traverses. We call it the ideal weight.
The ideal weight is central to the weight control algorithm for biased BD discussed
in the next subsection. (For another case, that of zero bias vector, the weight of a
particle is also deterministic, since it is always 1.)

Generally, if the bias vector is not the optimal one, or ∆t is finite as in a numerical
integration, the weight of a particle depends on the path.

Theorem 3. Under the optimal bias vector,

Λ(t) = lnu(x) − lnu(Xb(t)),(4.2)

where Xb(t), Λ(t) satisfy (3.6).
Proof. At t = 0, (4.2) is obviously satisfied.
Hence, we need only prove

dΛ(t) = −d lnu(Xb(t)).

The characteristic operator, (2.5), for Xb(t) in (3.4) is

Lb = L + cTBT∇ =
1

2
BBT : ∇∇T + aT∇ + cTBT∇.

By the Ito formula, (2.4),

d lnu(Xb(t)) = Lb(Xb(t)) lnu(Xb(t))dt + (∇x lnu(Xb(t)))TB(Xb(t))dW (t)

=

(
−1

2

(∇u)T

u
BBT∇u

u
+

1

u
Lu + cTBT∇u

u

)
dt +

(∇u)T

u
B dW (t).

Substitute Lu = 0, which is obtained from (2.7), and BT∇u/u = c, which is obtained
from (3.11), and we have

d lnu =
1

2
cTcdt + cTdW (t) = −dΛ,

which completes the proof.

4.2. Weight control. The ideal weight defined previously is a perfect choice for
the target weight; however, it is not practical. In the next subsection, we formulate
the target weight in terms of an approximate reaction probability. With a target
weight for each configuration and a lower and an upper weight tolerance, the weight
control algorithm performs in the following way: At the beginning of each time step,
the particle’s weight is checked.

1. If the weight falls below the range, its weight is doubled with 50% proba-
bility and the trajectory is terminated with 50% probability. A terminated
trajectory contributes the value 0 to the expectation.
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double

destroy

split

Fig. 3. Mechanism for keeping weight within prescribed bounds.

2. If the particle’s weight is above the range, it splits into two particles, each
with half the weight, and they are simulated separately. The final result is
the sum of that for the two particles.

3. If the weight is within the range, the simulation continues.
This is illustrated in Figure 3. Thus the expectation of the outcome is unchanged in
all cases. For each experiment, a particle could split many times, thus producing many
reacted trajectories with different weights and many destroyed trajectories with zero
weight. The weights of all reacted trajectories are summed to yield a single outcome
for one experiment.

Without weight control, the particle’s weight can grow without bound due to the
imperfect choice of the bias vector and the approximation of the numerical integration
method. With weight control, the weight of each Brownian particle is forced into a
range. If the target weight is close to the ideal weight, a particle’s weight is also close
to the optimal weight.

In the weight control algorithm, the double or nothing strategy for a low weight
particle halves the remaining simulation time while doubling the variance. The split-
ting strategy for a high weight particle doubles the remaining simulation time while
halving the variance. The weight control algorithm is shown to be effective by the nu-
merical tests, which indicates that the gain from reducing simulation time more than
offsets the loss from increasing the variance for low weight particles, and the gain from
reducing the variance more than offsets the loss from increasing the simulation time
for high weight particles.

4.3. Construction of bias vector and target weight. A bias vector and a
target weight are required by the algorithm. Of course, we do not know the optimal
bias vector in (3.11) nor the ideal weight in (4.1). If we have an approximation of
the reaction probability u(x), we can construct the bias vector and target weight
easily.

Motivated by WEBD is the use of a reaction coordinate ξ(x), which we employ to
construct an approximate solution having the form û(ξ(x)). The reaction coordinate
ξ(x) measures nearness to reaction and is defined for every configuration. It is chosen
so that ξ(x) = ξrc exactly gives the reaction surface and ξ(x) = ξq approximately gives
the q-surface. To determine û(ξ)) in the case of a conservative force, the Smoluchowski
equation (2.15′) is expressed in variational form in terms of a functional of u(x).
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Minimization of this functional for the “test” function u(x) ≈ û(ξ(x)) yields the
following formula [23, 22]:

û(ξ) =

(∫ ξq

ξrc

dξ′ρ(ξ′)−1

)−1 ∫ ξq

ξ

dξ′ρ(ξ′)−1,

where ρ(ξ′) =
∫
Ω′ dx δ(ξ(x) − ξ′) e−U(x)/(kBT )(∇ξ(x))TD(x)∇ξ(x) is an integral on

the manifold ξ(x) = ξ′. The density ρ(ξ′) might be chosen heuristically as illustrated
in this article or by means of a Monte Carlo calculation as detailed in [23, 22].

The bias vector defined as in (3.11), but using û(ξ(x)) for u(x), might require
numerical derivatives. The target weight logarithm λ(x) according to (4.2) is

λ(x) = ln û(ξ(x0)) − ln û(ξ(x)),

where x0 is the starting point of a trajectory.

In the reaction probability problem, we use a different formula,

λ(x) = ln ûb − ln û(ξ(x)),(4.3)

where ûb approximates an average of û(ξ(x)) on the b-surface. The initial weight
of a particle is still 1, while the initial target weight is ûb/û(ξ(x0)). This change of
target weight forces a particle to split or to be destroyed with some chance during the
beginning of a trajectory based on the value û(ξ(x0)) at its starting point x0. The
target weight on the reaction surface is ûb, which is independent of the starting point
x0. This target weight forces reacted particles to have about the same weight ûb,
which is proved to be effective by numerical experiments. The numerical experiments
use a loose weight tolerance for the particle weight Λn,

−2 ≤ Λn − λ(Xn
b ) ≤ +1,

due to the very approximate nature of λ(x).

5. Numerical testing. Here we briefly describe the rate constant computation
for the enzyme–substrate system. A full description can be found in [22], and in [24]
for the three-dimensional case.

The rate constant k is approximated using the domain truncation formula

1

k
=

1

kf
+

∫ +∞

q

dr
exp (Uext(r)/(kBT ))

4πr2d(r)
,

and the Northrup–Allison–McCammon formula [14]

1

kf
=

1

ū(b)

∫ q

b

dr
exp (Uext(r)/(kBT ))

4πr2d(r)
,

where r is the distance between the substrate and the enzyme, b < q are two values
of r, d(r) is the relative diffusion coefficient between the pair of molecules, Uext(r) is
the intermolecular potential energy when the distance is large, and ū(b) is the average
reaction probability on the b-surface, as defined in section 2.3.
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5.1. E. coli SOD with and without weight control. The enzyme CuZn
SOD converts toxic O−

2 ions to oxygen and hydrogen peroxide. Examined here is
E. coli SOD 1eso, whose coordinates are from the Protein Data Bank (http://www.
rcsb.org/pdb). Partial charges for atomic positions of SOD are from the standard
CHARMM force field [1] incorporated into UHBD. The substrate O−

2 is modeled by
a sphere of radius 1.5 Å and a charge of −e, which does BD in ionized solvent with
SOD fixed in space. The electrostatic potential surrounding SOD is obtained from a
numerical solution of the Poisson–Boltzmann equation on a three-dimensional grid.
The atoms of the substrate and enzyme are modeled as nonpenetrating hard spheres
of specified radius. Reaction is said to occur if O−

2 is within 7 Å of the copper atom
of SOD. When O−

2 has a hard sphere contact with a nonreacting region of SOD, one
simply retries the integration step with another Gaussian distributed random vector.
The diffusion tensor is

D =

(
kBT

6πηa1
+

kBT

6πηamol

)
I,

where temperature T = 300 K, water viscosity η = 0.89 g m−1s−1, the hydrodynamic
radius of O−

2 a1 = 2.05 Å, and that of SOD amol = 25 Å.

The simulations compute the average reaction probability on the b-surface and
then use the NAM formula with b = 80 Å and q = 400 Å to obtain the rate constant.
The origin is chosen to be the geometric center of the atoms of SOD. Biased BD uses
for a reaction coordinate ξ the distance between the O−

2 ion and the copper atom of
SOD. The bias force and target weight are constructed as described in section 4.3.
A heuristic choice for the density function based on an analytical solution of (2.15)
for three-dimensional pure diffusion is given by ρ(ξ) = ξ2, for which û(ξ) = (1/ξ −
1/ξq)/(1/ξrc−1/ξq), where ξrc = 7 Å and ξq = 405.26545 Å. An approximate solution
û(ξ) is also computed with the Monte Carlo method described in [23, 22].

Results are given in Table 1. The value tneeded is the performance metric; it is an
estimate of the CPU hours needed by a Pentium III 1GHz machine needed to attain
a statistical error of 5% with 95% confidence. The variance for Ntrials trajectories is
estimated to be Varζ/Ntrials, where Varζ is a calculated estimate of the variance of
the average reaction probability ū(b). With 95% confidence the calculated estimate
Eζ is in error by less than 1.96×

√
Varζ/Ntrials. Assume Ntrials is chosen so that this

is equal to 0.05× ū(b), where ū(b) represents the best estimate obtained by any means
possible. Then

tneeded =

(
1.96

0.05

)2

× Varζ

ū(b)2
× tstep × n̄steps/3600,(5.1)

where tstep is the CPU seconds per integration step of the SDE and n̄steps is the
average number of integration steps per trajectory.2 The value ū(b) in the formula
is obtained as an average of the last four Eζ values with weights proportional to the
reciprocals of the corresponding four Varζ values. The value Ntrials in the table is the
number of trajectories started from the b-surface, Ndestroy is the number of times a
trajectory is terminated, Nsplit is the number of times a trajectory is split, and the
value tactual is the actual unnormalized total CPU time. The cost of computing the
Monte Carlo approximation of the densities is 11 minutes of the CPU time.

2For unbiased BD, ū(b) − ū(b)2 is used in place of Varζ.
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Table 1

Rate constant and computing cost for SOD 1eso with and without weight control. heur: density
function ρ(ξ) = ξ2. mc: density function from Monte Carlo simulation. bias: biased BD without
weight control. bswt: biased BD with weight control.

Unbiased heur.bias heur.bswt mc.bias mc.bswt

tstep(s) 2.58 × 10−6 5.50 × 10−6 6.91 × 10−6 5.59 × 10−6 6.83 × 10−6

n̄steps 1.96 × 105 6.14 × 105 1.01 × 105 1.57 × 105 8.78 × 104

Ntrials 200000 200000 200000 200000 200000

Ndestroy N/A N/A 187408 N/A 215294

Nsplit N/A N/A 13 N/A 55130

tactual(h) 28.2 187.8 38.9 48.7 33.3

Eζ 1.73 × 10−3 1.74 × 10−3 1.74 × 10−3 1.74 × 10−3 1.75 × 10−3

Varζ 1.73 × 10−3 6.86 × 10−5 7.20 × 10−5 1.46 × 10−4 4.16 × 10−5

k(M−1s−1) 1.71 × 108 1.71 × 108 1.71 × 108 1.72 × 108 1.72 × 108

∆k(M−1s−1) 1.79 × 107 3.57 × 106 3.66 × 106 5.21 × 106 2.78 × 106

tneeded(h) 124.4 32.9 7.1 18.0 3.5

The ratio of Nsplit to 2Ndestroy is highly unbalanced for the heuristic bias force,
indicating a poor approximate solution obtained heuristically. As a result the weight
control forces a particle’s weight into an improper range and does not reduce the vari-
ance; however, it does reduce the average number of integration steps per trajectory
significantly.

The rate constant of bovine B. taurus and shark P. glauca SOD determined experi-
mentally is 3.92×109 M−1s−1 [17] compared to a calculated value of 5×109 M−1s−1 [18].

5.2. Model protein with and without weight control. The model problem
discussed here originates in [15] and is later used [7] as a test problem to show the
speedup of the WEBD algorithm. In the solvent there are two types of proteins, each
a sphere of radius 18 Å. To define a reaction condition, imagine that the center of a
17 Å × 17 Å square is attached tangentially to each sphere with vertices labeled A, B,
C, and D. Reaction occurs if at least 3 of the 4 pairs of vertices A1A2, B1B2, C1C2,
D1D2 are within 2 Å.

The NAM formula is used with b = 80 Å and q = 400 Å to obtain the rate
constant. The reaction coordinate ξ is defined as the third smallest distance between
4 pairs of vertices, which is the same as that used in [7]. Configuration space is
six-dimensional, and near the reaction boundary the volume of configuration space
ρ(ξ) as a function of ξ is proportional to ξ5. However, the 3 orientational degrees
of freedom are limited in their range, and once ξ gets large enough this range is
exhausted and further growth in ρ(ξ) is proportional to ξ2. For a heuristic density
function we choose d ln ρ(ξ)/d ln ξ = a(ξ), where a(ξ) is a step function that takes the
value 5 for 2 < ξ < 30, the value 4 for 30 < ξ < 40, the value 3 for 40 < ξ < 50, and
the value 2 for 50 < ξ < 600. Also tested is a density function from a Monte Carlo
simulation.

Complete details of this test problem are lengthy and the reader is referred to [22,
23] and to the references therein. Also, the problem described here is outside the class
of problems defined in section 2.3, but the modifications are fairly straightforward.

Table 2 shows the test results, where the parameters have the same meaning as
before. The starred entries for unbiased BD are theoretical estimates [7, 23].
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Table 2

Rate constant and computing cost for model protein with and without weight control. heur:
density function d ln ρ(ξ)/d ln ξ = 2, . . . , 5. mc: density function from Monte Carlo simulation.
bias: biased BD without weight control. bswt: biased BD with weight control.

Unbiased heur.bias heur.bswt mc.bias mc.bswt

tstep(s) 4.49 × 10−6 7.69 × 10−6 8.85 × 10−6 7.68 × 10−6 8.83 × 10−6

n̄steps 3.15 × 105 ∗ 1.94 × 105 1.48 × 105 1.37 × 105 1.33 × 105

Ntrials 200000 200000 200000 200000

Ndestroy N/A N/A 542762 N/A 566803

Nsplit N/A N/A 501488 N/A 504419

tactual(h) 82.8 73.0 58.4 65.3

Eζ 4.95 × 10−6 8.66 × 10−6 5.48 × 10−6 8.52 × 10−6

Varζ 6.41 × 10−8 4.06 × 10−9 4.92 × 10−8 3.40 × 10−9

k(M−1s−1) 1.05 × 105 1.83 × 105 1.16 × 105 1.80 × 105

∆k(M−1s−1) 2.35 × 104 5.91 × 103 2.06 × 104 5.41 × 103

tneeded(h) 70487.1 ∗ 1667.3 30.4 735.3 23.5

The expectations are low for biased BD without weight control. Moreover, the
confidence intervals are disjoint. Perhaps there should be trajectories with larger
weights that do not materialize for biased BD without weight control.
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