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An impulse integrator for Langevin dynamics

ROBERT D. SKEEL1*, and JESUÂ S A. IZAGUIRRE2

1Department of Computer Science (and Beckman Institute), University of Illinois,
1304 West Spring®eld Avenue, Urbana, IL 61801-2987, USA

2Department of Computer Science and Engineering, University of Notre Dame,
IN 46556-0309, USA

(Received 2 January 2002; revised version accepted 10 July 2002)

The best simple method for Newtonian molecular dynamics is indisputably the leapfrog
StoÈ rmer±Verlet method. The appropriate generalization to simple Langevin dynamics is
unclear. An analysis is presented comparing an `impulse method’ (kick; ¯uctuate; kick), the
1982 method of van Gunsteren and Berendsen, and the BruÈ nger±Brooks±Karplus (BBK)
method. It is shown how the impulse method and the van Gunsteren±Berendsen methods
can be implemented as e� ciently as the BBK method. Other considerations suggest that the
impulse method is the best basic method for simple Langevin dynamics, with the van
Gunsteren±Berendsen method a close contender.

1. Introduction
This paper considers simple numerical integrators for

Langevin equations of the form

dx ˆ v dt; M dv ˆ F…x† dt ¡ kBT D¡1v dt

‡ 21=2kBT D¡1=2 dW …t†; …1†

where x and v are collections of position and velocity
coordinates to be determined as functions of time t, M is
a diagonal matrix of masses, F…x† is the collective force
vector, kB is Boltzmann’s constant, T is the temperature,

D is a constant diagonal di� usion tensor, and W …t† is a
collection of independent standard Wiener processes.
One application of this type of Langevin equation is
the modelling of implicit solvent with di� usion coe� -
cients Dii ˆ …kBT †=…6p²ai† where ² is the solvent vis-
cosity and the ai are particle radii. Another application
is NVT sampling (and the equilibration phase of an
NVE simulation), in which Dii ˆ …kBT †=…®mi† where ®
is the collision parameter or damping constant. For
Newtonian molecular dynamics (MD), where ® ˆ 0,
the leapfrog StoÈ rmer±Verlet scheme is the basic
method from which most advanced methods are con-
structed. Considered here is the question of how to gen-
eralize the leapfrog method to Langevin dynamics.
There are a number of generalizations. Two popular
ones are the scheme of BruÈ nger, Brooks and Karplus
[1] (BBK) and the 1982 scheme of van Gunsteren and
Berendsen [2] (vGB82). A third scheme considered here
is a `Langevin impulse’ (LI) method, brie¯y outlined in
[3] and tested in [4]. Presented in this article is analytical

evidence favouring the LI and vGB82 schemes over the
BBK scheme for problems given by equation (1). Addi-

tional numerical evidence is needed before drawing
practical conclusions.

The more general Langevin equation, derived in [5],

has a dense array D…x† of 3 £ 3 tensors instead of D.

Possible di� usion tensors are given in [6]. See [7] for

appropriate numerical methods.

Section 2 presents basic information needed to derive

Langevin integrators. Section 3 derives a simple one-

parameter family of numerical integrators that are

exact for constant force. These methods seem to require

a pair of Gaussian random variables per timestep as well

as exponentials of ¡®iD where ®i ˆ …kBT †=…Diimi†, the mi
are masses, and D is the length of a timestep. The vGB82

scheme is such a method, and it is used, for example, in

[8]. Another such method, simpler than the vGB82

scheme, is the LI scheme, which is based on the splitting

`kick; ¯uctuate; kick’ (as opposed to the `kick; drift;

kick’ of leapfrog). Section 4 discusses the BBK and

other schemes, that are not exact for constant force.

The BBK scheme is, for example, implemented in the

parallel molecular dynamics program NAMD [9].

An earlier analytical comparison of simple Langevin

integrators appears in [10]. The study was limited to

schemes that require only one independent Gaussian

random variable per timestep per velocity component,

and among such schemes the BBK scheme is shown to

be the best. Section 5 of this article shows that yet other

schemes, notably the vGB82 and LI schemes, also may

be implemented to attain the same economy in random

numbers.
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Section 6 examines the limiting case where the inertia
term in equation (1) is negligible compared with the
friction term. Both the vGB82 and LI schemes give
correct behaviour in the Brownian dynamics limit with
the vGB82 scheme giving higher accuracy. The BBK
scheme does not behave correctly.

Section 7 analyses stability for the BBK and LI
schemes for the harmonic oscillator and concludes that
the LI scheme is stable for longer timesteps D. (Here
stability means that the energy is bounded.) Theoretic-
ally, the advantage is only slight for realistic values of ®;
however, signi®cant di� erences are observed in the
numerical tests in [4] in the context of multiple timestep-
ping.

Section 8 shows that the generalization of the LI
scheme to multiple timesteps is particularly simple.

An analysis of the accuracy of these methods is given
elsewhere [11, see also 12]. It is shown that the
methods that are exact for constant force are second-
order accurate, but that the BBK method is only ®rst-
order accurate. Also the argument in [10] favouring the
BBK method is reexamined, and it is shown by con-
struction that the BBK method is not unique in its
ability to satisfy exactly the virial relation for a har-
monic oscillator but that this is possible for other
methods including the LI method.

2. Langevin integrators
The analysis in this article is given for the special case

of the Langevin equation (1) where the friction tensor

kBT D¡1 ˆ ®M for some scalar ® 5 0:

dx ˆ v dt; dv ˆ M¡1F…x† dt ¡ ®v dt

‡ …2®kBT †1=2M¡1=2 dW …t†: …2†

The results generalize immediately to ® being a diagonal
matrix.

A Wiener process W …t†, t 5 0, is a one-parameter
family of Gaussian random variables with expectations
zero and covariances E…W …s†W …t†† ˆ minfs; tg. Because
the W …t† are all Gaussian, this information su� ces to
determine joint probabilities. Alternatively, W …t† may
be viewed as a `random’ continuous function with

W …0† ˆ 0. For the Langevin equation a Riemann±
Stieltjes integral is adequate (and an Ito or Stratonovich
interpretation is unnecessary). A Wiener process may be
generated at consecutive grid points tn by

W …0† ˆ 0; W …tn† ˆ W …tn¡1† ‡ …tn ¡ tn¡1†1=2Zn; …3†

where Zn denotes a sequence of independent standard
Gaussian random variables (with mean 0 and variance
1).

Simple numerical Langevin integrators use integrals„ b
a f …t† dW …t† for deterministic functions f 2 C1‰a; bŠ.

These integrals are Gaussian random variables with
expectations zero and covariances given by

E
…b

a
f1…t† dW …t†

…b

a
f2…t† dW …t†

³ ´
ˆ

…b

a
f1…t†f2…t† dt: …4†

Thus the computation reduces to generating Gaussians
of given covariances. A good reference on numerical
methods for stochastic di� erential equations is [13],
and other references are [14, 15].

3. Derivation of integrators exact for constant force
We derive the methods in a form that uses positions

only. This form is suitable as a canonical form because
it is expressed in terms of values x at which the force

F…x† is evaluated, which leaves little room for re-
interpretation [16]. Also, those same x values are good
candidates for assessing the accuracy of a numerical
integrator. Integrating equation (2) by parts gives

x…t† ˆ x…tn† ‡ 1 ¡ e¡®…t¡tn†

®
v…tn†

‡
…t

tn

1 ¡ e¡®…t¡s†

®
M¡1F…x…s†† ds

‡ …2®kBT †1=2M¡1=2

…t

tn

1 ¡ e¡®…t¡s†

®
dW …s†: …5†

By setting n ˆ 0 and t ˆ t1 in equation (5), we may
obtain an equation for x…t1† in terms of x…t0† and

v…t0†. By setting t ˆ tn¡1 and then t ˆ tn‡1 in equation
(5), we obtain two equations from which we may elim-
inate v…tn† to yield an equation for x…tn‡1† in terms of

x…tn† and x…tn¡1†. More speci®cally,

x…t1† ˆ x…t0† ‡ 1 ¡ e¡®D

®

£ v…t0† ‡
…t1

t0

Á…t ¡ t0†M¡1F…x…t†† dt ‡ R0
‡

Á !
…6†

and

x…tn‡1† ˆ …1 ‡ e¡®D†x…tn† ¡ e¡®Dx…tn¡1† ‡
1 ¡ e¡®D

®

£
…tn‡1

tn¡1

Á…t ¡ tn†M¡1F…x…t†† dt ‡ Rn
¡ ‡ Rn

‡

Á !

;

…7†

n ˆ 1; 2; . . . ; N ¡ 1, where

Á…t† ˆ

e®t ¡ e¡®D

1 ¡ e¡®D ; ¡D 4 t 4 0;

1 ¡ e®…t¡D†

1 ¡ e¡®D ; 0 4 t 4 D;

8
>><
>>:

…8†
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and

Rn
¡ ˆ …2®kBT †1=2M¡1=2

… tn

tn¡1

Á…t ¡ tn† dW …t†;

Rn
‡ ˆ …2®kBT †1=2M¡1=2

… tn‡1

tn
Á…t ¡ tn† dW …t†:

The forces F…x…t†† in the integrands of equations (6)
and (7) are to be approximated using values of F…x…t††
at positions xn º x…tn† that have already been calcu-
lated. For a method based on positions, three formulas
may be needed.

3.1. Starting formula. There is little choice but to use
F…x…t†† º F…x0†:

x1 ˆ x0 ‡ 1 ¡ e¡®D

®
…v0 ‡ Dw‡M¡1F…x0† ‡ R0

‡†; …10†

where x0 ˆ x…t0†, v0 ˆ v…t0†, and

w‡ ˆ w‡…®D† ˆ
e¡®D ¡ 1 ‡ ®D
®D…1 ¡ e¡®D† : …11†

3.2. Continuation formula. Here we interpolate F…xn¡1†
and F…xn†, which we express as F…x…t†† º F…xn†‡
À…t ¡ tn†…F…xn† ¡ F…xn¡1†† for some À…t† satisfying

À…¡D† ˆ ¡1 and À…0† ˆ 0. (The choice of À…t† is dis-
cussed below.) The formula is

xn‡1 ˆ …1 ‡ e¡®D†xn ¡ e¡®Dxn¡1 ‡
1 ¡ e¡®D

®
…DM¡1F…xn†

‡ DSM¡1…F…xn† ¡ F…xn¡1†† ‡ Rn†; …12†

n ˆ 1; 2; . . . ; N ¡ 1, where

Rn ˆ Rn
¡ ‡ Rn

‡ and S ˆ 1

D

…D

¡D
Á…t†À…t† dt: …13†

3.3. Finishing formula. A ®nishing formula to get

vN º v…tN† can be chosen so that if it is followed by a
restart it is equivalent to one use of the continuation
formula

vN ˆ ®e¡®D

1 ¡ e¡®D …xN ¡ xN¡1† ‡ Dw¡M¡1F…xN†

‡ DSM¡1…F…xN† ¡ F…xN¡1†† ‡ RN
¡ ; …14†

where

w¡ ˆ w¡…®D† ˆ 1 ¡ w‡…®D†: …15†

A di� erent criterion, and hence a di� erent formula,
could be used to de®ne velocities.

A method as de®ned above is exact for constant force.

The Langevin impulse method is de®ned by replac-
ing F…x† by D…w‡¯…t ¡ tn¡1

‡ † ‡ w¡¯…t ¡ tn
¡†† £ F…x† for

tn¡1 4 t 4 tn in equation (2), where the weights
0 < w¡ 4 w‡ < 1, de®ned by equations (11) and (15),
are such that the method is exact for constant force.
(As originally proposed [3], w‡ ˆ w¡ ˆ 1

2
. The choice

of weights does not a� ect the continuation formula,
but the choice given here makes the starting formula
exact for constant force.) This gives a formula that is
identical to equation (10) and equation (12) for S ˆ 0.
Note the time symmetry of the impulse method: if we
substitute ¡D for D and interchange n ‡ 1 and n ¡ 1,
equation (12) remains the same.

The derivation of the vGB82 scheme and an alterna-
tive derivation of the LI scheme proceeds from two
choices of basis functions for interpolation in the key
approximation (12). To assess how F…x…t†† behaves,
we should ®rst look at the behaviour of x…t†. Neglecting
noise, we have from equation (5) that, for constant
force,

x…t† º x…tn† ‡
1 ¡ e¡®…t¡tn†

®
v…tn†

‡ e¡®…t¡tn† ¡ 1 ‡ ®…t ¡ tn†
®2

M¡1F; …16†

so that x…t†, tn¡1 4 t 4 tn‡1, is approximately a linear
combination of 1, e¡®…t¡tn†, and t ¡ tn. The last function
is least important because it is not present if F ˆ 0. If the
force F…x† is linear, then F…x…t†† is likewise a linear
combination of these functions, approximately. The LI
method chooses 1, e¡®…t¡tn† as basis functions for inter-
polation of Fn, Fn¡1, so that À…t† ˆ …1 ¡ e¡®…t¡tn††=
…e®D ¡ 1† and

S ˆ 0: …17†

The vGB82 method chooses 1, t ¡ tn as basis functions
for interpolation of Fn, Fn¡1, so À…t† ˆ …t ¡ tn†=D
and

S ˆ 1
2
…w‡ ¡ w¡†: …18†

The weights w§ ˆ 1
2

§ 1
12 ®D ‡ O……®D†3†.

4. Other simple Langevin integrators
Discussed here are integrators that are not exact for

constant force.
The BBK integrator [1] is motivated by the desire to

use just one independent random variable per step per
velocity component. One integration of equation (2)
yields
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_xx…tn‡1=2† ˆ _xx…tn¡1=2† ‡
…tn‡1=2

tn¡1=2

…M¡1F…x…t† ¡ ® _xx…t†† dt

‡ …2®kBT †1=2M¡1=2…W …tn‡1=2† ¡ W …tn¡1=2††;
…19†

and centred di� erence approximations give the conti-
nuation formula

xn‡1 ˆ 2xn ¡ xn¡1 ‡ D2M¡1F…xn† ¡ D®

2
…xn‡1 ¡ xn¡1†

‡ D3=2…2®kBT †1=2M¡1=2Zn; …20†

n ˆ 1; 2; . . . ; N ¡ 1. A similar argument gives a starting
formula for obtaining x1 in terms of x0 and v0:

x1 ˆ x0 ‡ Dv0 ‡ 1
2
D2M¡1F…x0† ¡ 1

2
D2®v0

‡ 1
2
D3=2…2®kBT †1=2M¡1=2Z0: …21†

Another discretization that generalizes the leapfrog
method is proposed in [17]. It is implemented in the
Brownian dynamics program UHBD [18]. Implicit
discretization schemes have also been proposed for
Langevin dynamics [19].

5. E� cient implementation
The values R0

‡, R1, R2, . . ., RN¡1, RN
¡ are joint Gaus-

sian random variables of zero mean and known covar-
iance matrix C, which has the form

C ˆ

a b

b c ‡ a b

b . .
. . .

.

. .
.

c ‡ a b

b c

2

666666666664

3

777777777775

; …22†

where a ˆ E…Rn
‡Rn

‡†, b ˆ E…Rn
‡Rn‡1

¡ † and c ˆ E…Rn‡1
¡ Rn‡1

¡ †.
Using equation (4), it can be shown that

a ˆ kBT M¡1…2w2
‡®D ‡ w‡ ¡ w¡†; …23†

b ˆ kBT M¡1…2w‡w¡®D ‡ w¡ ¡ w‡†; …24†

c ˆ kBT M¡1…2w2
¡®D ‡ w‡ ¡ w¡†: …25†

To calculate the random numbers, we may use
‰R 0

‡; R 1; R 2; . . . ; R N¡1; R N
¡ŠT ˆ C 1=2‰Z 0; Z 1; Z 2; . . . ; Z N¡1; Z NŠT

where the Zn are independent Gaussian random num-
bers of mean 0 and variance 1 and where C1=2 is a square
matrix satisfying C1=2C

T
1=2 ˆ C. For a Cholesky decom-

position, C1=2 is a bidiagonal matrix with main diagonal
elements, denoted here by ¬0, ¬1, ¬2, . . ., ¬N, and ®rst
subdiagonal elements, denoted here by  0,  1, . . .,  N¡1.

A simple recurrence for these elements is given in the
algorithm that follows.

Note the e� cient use of random numbers. The
number of random variables needed is just one (set)
per step if we forgo the calculation of accurate velocities
at each step. If we want to apply the ®nishing formula at
every step, then the continuation formula is not needed
and we have to generate two rather than one random
number per step.

The position-only form (12) su� ers from excessive
roundo� error in ¯oating-point arithmetic [20]. This
may be avoided through use of the summed form
([20], p. 353), in which the older value xn¡1 is represented
in terms of xn and an increment, which we take to be

vn¡1=2 ˆ ®e¡®D=2…1 ¡ e¡®D†¡1…xn ¡ xn¡1†. Suppose that
velocity output is desired after N 5 1 steps of length D
and that we are given the initial collective position
vector x0 and velocity vector v0. We start with

F0 ˆ F…x0†; …26†

¬0 ˆ a1=2; …27†

R0
‡ ˆ ¬0Z0; …28†

v1=2 ˆ e¡®D=2…v0 ‡ Dw‡M¡1F0 ‡ R0
‡†; …29†

x1 ˆ x0 ‡ 1 ¡ e¡®D

®e¡®D=2
v1=2: …30†

We continue for n ˆ 1; 2; . . . ; N ¡ 1 with

Fn ˆ F…xn†; …31†

 n¡1 ˆ b=¬n¡1; ¬n ˆ ‰a ‡ c ¡ … n¡1†2Š1=2; …32†

Rn ˆ  n¡1Zn¡1 ‡ ¬nZn; …33†

vn‡1=2 ˆ e¡®D=2…e¡®D=2vn¡1=2 ‡ DM¡1Fn

‡ DSM¡1…Fn ¡ Fn¡1† ‡ Rn†; …34†

xn‡1 ˆ xn ‡
1 ¡ e¡®D

®e¡®D=2
vn‡1=2: …35†

We ®nish with

FN ˆ F…xN†; …36†

 N¡1 ˆ b=¬N¡1; ¬N ˆ ‰c ¡ … N¡1†2Š1=2; …37†

RN
¡ ˆ  N¡1ZN¡1 ‡ ¬NZN; …38†

vN ˆ e¡®D=2vN¡1=2 ‡ Dw¡M¡1FN

‡ DSM¡1…FN ¡ FN¡1† ‡ RN
¡ : …39†

The required constants are de®ned by equations (11),
(15), (23)±(25), and (17), (18).
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If the velocity vN is not needed, the arithmetic of a
Cholesky decomposition may be avoided by choosing

C1=2 to be an N £ N ‡ 1 matrix with main diagonal
elements ¬0, ¬, ¬, . . ., ¬, and with ®rst superdiagonal
elements  ,  , . . .,  where

¬2 ˆ 1
2
…c ‡ a ‡ ‰…c ‡ a†2 ¡ 4b2Š1=2†; …40†

 2 ˆ 1
2
…c ‡ a ¡ ‰…c ‡ a†2 ¡ 4b2Š1=2†; …41†

¬2
0 ˆ ¬2 ¡ c: …42†

After an initialization

F0 ˆ F…x0†; …43†

R0 ˆ ¬0Z0 ‡  Z1; …44†

·vv0 ˆ v0; …45†

each step is the same:

vn‡1=2 ˆ e¡®D=2…·vvn ‡ w‡…DM¡1Fn ‡ Rn††; …46†

xn‡1 ˆ xn ‡ 1 ¡ e¡®D

®e¡®D=2
vn‡1=2; …47†

Fn‡1 ˆ F…xn‡1†; …48†

Rn‡1 ˆ ¬Zn‡1 ‡  Zn‡2; …49†

·vvn‡1 ˆ e¡®D=2vn‡1=2 ‡ DSM¡1…FN‡1 ¡ FN†

‡ w¡…DM¡1Fn‡1 ‡ Rn‡1†: …50†

6. Robustness: the limiting case of Newtonian and
Brownian dynamics

In the limit of Newtonian dynamics, as ® ! 0, all
three integrators become the leapfrog StoÈ rmer±Verlet
method. More speci®cally, the starting formulas equa-
tions (10) and (21) become

x1 ˆ x0 ‡ Dv0 ‡ 1
2
D2M¡1F…x0†; …51†

and the continuation formulas equations (12) and (20)
become

xn‡1 ˆ 2xn ¡ xn¡1 ‡ D2M¡1F…xn†; …52†

n ˆ 1; 2; . . . ; N ¡ 1.
A high friction limit approximation is appropriate if

the friction e� ect kBT D¡1 is much greater than the iner-
tial e� ect M=t. This limit is attained by setting the
masses M to zero in equation (1) and the resulting equa-
tions are those of Brownian dynamics:

dx ˆ 1

kBT
DF…x† dt ‡ 21=2D1=2 dW …t†: …53†

This approximation is derived in [6], section III.

In the limit of Brownian dynamics, as M ! 0 with

® ˆ kBT D¡1M¡1, the starting formula, equation (10),
becomes

x1 ˆ x0 ‡ D
kBT

DF…x0† ‡ …2D†1=2

… t1

t0

dW …t†; …54†

and the continuation formula, equation (12), becomes

xn‡1 ˆ xn ‡ D
kBT

D…F…xn† ‡ S…F…xn† ¡ F…xn¡1†††

‡ …2D†1=2

…tn‡1

tn
dW …t†; …55†

n ˆ 1; 2; . . . ; N ¡ 1, where S ˆ 0 for the LI scheme and

S ˆ 1
2

for the vGB82 scheme. The value S ˆ 0 corre-
sponds to the Euler±Maruyama method ([13], p. 305),
of weak order 1, which is a popular choice for Brownian
dynamics, introduced in this context by Ermak and
McCammon [6]. The value S ˆ 1

2
corresponds to the

second-order explicit Adams formula.
In the Brownian limit, the BBK scheme becomes the

explicit midpoint formula, which is unconditionally
unstable ([20], p. 373]).

7. Stability
We compare the stability of the impulse integrator to

that of the BBK scheme. For the analysis we consider
the harmonic oscillator, for which M¡1F…x† ˆ ¡!2x,
and omit the inhomogeneous terms in the numerical
scheme, since when studying perturbations they cancel
out. The outcome of such an analysis is a condition
involving the timestep D and problem parameters ®
and ! that guarantees that the homogeneous di� erence
equation has only decaying solutions. For this purpose
we need conditions for the solutions of a general quad-
ratic equation

¶2 ‡ 2c1¶ ‡ c0 ˆ 0 …56†

both to be less than one in modulus. A detailed case
analysis (involving a plot of c0 versus c1) shows this to
be the case if and only if

jc0j < 1 and jc1j < 1
2
…1 ‡ c0†: …57†

For the harmonic oscillator with the inhomogeneous
term omitted, the impulse integrator, given by equation
by equation (12), simpli®es to

xn‡1 ˆ …1 ‡ e¡®D†xn ¡ e¡®Dxn¡1 ¡ 1 ¡ e¡®D

®
D!2xn:

…58†

The characteristic equation that determines the general
solution (obtained by trying xn ˆ …¶†n) is given by
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¶2 ¡ …1 ‡ e¡®D† ¡ 1 ¡ e¡®D

®
D!2

Á !

¶ ‡ e¡®D ˆ 0; …59†

which we express as

¶2 ¡ 2Be¡g=2¶ ‡ e¡g ˆ 0; …60†

where B ˆ cosh 1
2 g ¡ w2g¡1 sinh 1

2 g, with g ˆ ®D, and

w ˆ !D:
Applying the stability conditions given by equation

(57) to characteristic equation (60) for the impulse
method gives

jBj < cosh
g

2
; …61†

which simpli®es to

w < 2g coth
g

2

± ²1=2

; …62†

which is shown in ®gure 1 as the region under the solid
curve.

It is interesting to ®nd the condition for the critical
damping. This is done by setting the discriminant in
equation (60) to zero. We ®nd the two solutions

w2 ˆ g tanh
g

4
; …63†

w2 ˆ g coth
g

4
; …64†

both shown in ®gure 1 as dotted curves. For comparison
against the expression ® ˆ 2! for the critical damping of

the analytical damped oscillator, equation (63) may be
expressed as

® ˆ 2!
4

®D
tanh

®D
4

³ ´¡1=2

: …65†

Now we consider the stability analysis of the BBK
scheme. With the same simpli®cations given previously,
equation (20) becomes

xn‡1 ˆ 2xn ¡ xn¡1 ¡ D2!2xn ¡ D ®

2
…xn‡1 ¡ xn¡1†: …66†

The characteristic equation that determines the general
solution is given by

1 ‡ 1
2 ®D

¡ ¢
¶2 ¡ …2 ¡ !2D2†¶ ‡ 1 ¡ 1

2 ®D
¡ ¢

ˆ 0: …67†

Normalizing equation (67) and applying the stability
conditions of equation (57) gives

!D < 2: …68†

The region for critical damping corresponds to a
curve

®

!

± ²2
‡…!D†2 ˆ 4: …69†

Figure 2 shows a plot of the stability boundary for
the impulse integrator and the BBK scheme. The x axis
has been transformed from ®D to ®=! to illustrate how
much damping is needed for stability as D increases,
with a ®xed !:
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Figure 1. Stability region for the impulse integrator (LI). The
boundaries of critical damping, along with regions of
imaginary, positive and negative roots are illustrated.
Note that the method is unstable only for !¢ >
…2®¢ coth ®¢… ††1=2

, where the roots of the characteristic
polynomial are negative.
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Figure 2. Comparison of the stability boundary and the
critical damping boundary for the BBK scheme and the
im-pulse integrator (LI) applied to the scalar problem
�xx ‡ ® _xx ‡ !2x ˆ 0:



8. Multiple timestepping
Because of damping, Langevin dynamics are not

nearly as prone to instability as Newtonian MD, so
multiple timestepping is especially advantageous, as illu-
strated by the integration method LN [21].

Generalization of methods based on splitting, such
as the LI method, to multiple timesteps is particularly
simple. (Other methods may be generalized using the
`equivalence’ approach of [22], although this does not
lead to a unique formula.) Suppose F ˆ Ffast ‡ Fslow

where Ffast is to be evaluated every step and Fslow

every m steps. The MTS impulse method is equivalent
to replacing F…x† by

Xpm

nˆpm¡m‡1

D…w‡…®D†¯…t ¡ tn¡1
‡ † ‡ w¡…®D†¯…t ¡ tn¡††Ffast…x†

‡ mD…w‡…m®D†¯…t ¡ tpm¡m
‡ † ‡ w¡…m®D†¯…t ¡ tpm

¡ ††Fslow…x†

…72†

for tn¡1 4 t 4 tn. It follows from superposition that the
MTS impulse method is exact if both Fslow and Ffast are
constant. Let w be one of w¡, 1, or w‡. The method is
implemented by replacing D w…®D†Fn by D w…®D†Fn

fast ‡
mD w…m®D†Fn

slow if n is a multiple of m and by
D w…®D†Fn

fast otherwise.
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