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Abstract

Markov chain Monte Carlo methods are very popular for computing expectations. Their
efficiency and reliability are subject to two significant drawbacks. The first is the correlation
between successive samples. This reduces efficiency and frustrates variance estimation. The
second drawback is the dependence on starting values, which leads to discarding a large
initial set of “atypical” samples. The process of running the Monte Carlo method until
getting an adequate starting value is called equilibration. Associated with this are two
practical problems. One is to detect the onset of equilibration so that production may
begin. The other is to characterize what it means to be equilibrated so that there might be
a better understanding of how to initialize the equilibration process to reduce its running
time. This article examines the statistical error of Monte Carlo method and proposes a
definition of what it means to be equilibrated, which corresponds exactly to what is needed
in practice and which is amenable to mathematical analysis.

1 Overview

Vast amounts of computer time are used to compute expectations of “observables” A(x) that
depend on random states x drawn from distributions that are known except for their normalizing
factor. In particular, computing such averages constitutes the major part of calculations for
applications described by statistical mechanics. Methods for doing so typically employ Markov
chains constructed so that their stationary distribution is the target distribution. However,
from a statistical point of view, there are two problems with this approach: The first is the high
correlation between successive values generated by the Markov chain. This not only results
in slow convergence but makes error bars much more difficult to compute. The second is
the significant contamination introduced by poorly chosen starting values. In practice, this is
handled by discarding samples until “equilibration” has been attained. The problem with this is
not only the increased run time but the difficult question of deciding when to stop equilibration
and start production.

To explore this latter problem satisfactorily requires a precise definition for what it means to
be equilibrated. First, a distinction must be made between “equilibrated” and “in equilibrium.”
Being in equilibrium is necessarily a property of an ensemble x of values and implies that it
has a stationary distribution ρ(x). Being equilibrated appears to have no formal definition,
but in common parlance the term is applied to a state x rather than an ensemble of states
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x. In Section 2, after a review of Markov chain Monte Carlo (MCMC) methods, we propose
a precise definition for being equilibrated that corresponds precisely to what is relevant in
practice. The definition of being equilibrated is based on the following thought experiment:
Imagine generating a very large number N of samples from state x and using all but the first
m values to estimate the expectation. The state x is said to be equilibrated if when starting
the Markov chain from that state, the optimal value of m is zero.

To explore these issues further, we obtain, in Section 3, an expression for the statistical error
and its dependence on correlations and the starting value. The analysis is done for the case of a
finite number of states. There is an excellent precedent for developing the details of a theory for
Markov processes only for the case of a finite number of states and that is the landmark paper
of Crooks [2]. Also reference [1, Chap. 4] assumes a finite number of states, which is justified by
the use of finite-precision numbers (and the fact that finite precision seems to have no practical
effect on the results). Extension to an infinite state space is possible, at least for a number of
methods of interest.

For the most general case when the process is merely ergodic but not mixing, the effect
of the starting value is very difficult to understand. So we make the additional assumption in
Section 4 that the procedure is mixing, which is the normal situation for stochastic MCMCs.
This permits mathematical analysis, which gives evidence that the definition of equilibrated is
sensible.

The article closes with a discussion of the merit of the proposed definition. A good definition
not only captures the desired property but is also reasonably simple and easy to apply. This, is,
however, an open question. Another open question concerns a lower bound on the probability
of a state being equilibrated if it is randomly chosen from the target distribution.

2 Markov Chain Monte Carlo Methods

Given some observable A(x) defined for a set of states x, the problem is to estimate the expec-
tation

µ = 〈A(x)〉 =
∫
A(x)ρ(x)dx

with respect to some probability density ρ(x), which is known—except for its normalizing
constant. A typical example is a Boltzmann-Gibbs distribution, for which the probability
density is proportional to exp(−βE(x)), where E(x) is energy and β is the inverse temperature.
The expectation is estimated by an average

µ ≈ Ā0,N =
1
N

N−1∑
n=0

A(xn)

where the xn are random configurations, each with probability density ρ(x). A typical value of
N is one million.

Because the normalizing constant for ρ(x) is generally very costly to compute, random
configurations are generated using a method that does not require it, namely, a Markov chain
Monte Carlo method. Such a method generates a sequence

x0 → x1 → x2 → · · · → xN−1,

where only in the limit N →∞ does the density ρN (x) of xN converge to ρ(x)—if the process
is mixing. If the process is ergodic, it is the average (1/N)

∑N−1
n=0 ρn(x) that converges to ρ(x)

in the limit N →∞.
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The estimate and its accuracy depend on the initial value x0, and a poor choice will un-
duly contaminate the result. To avoid this, we first run the MCMC method starting with an
arbitrary value x′0 until it yields a value x′M which will not skew the estimate, a process called
equilibration, and we then start production using x0 = x′M . To reduce the cost of equilibration
M , a reasonably typical value is chosen for x′0.

As stated in the introduction, it is proposed that the suitability of a starting value x be
evaluated by comparing with the result of dropping the first m values. Hence, introduce the
more general average

Ām,N (x) def=
1

N −m

N−1∑
n=m

A(xn) given x0 = x.

Using this notation, the dependence of the estimate Ā0,N on the initial state x0 can be made
explicit via Ā0,N = Ā0,N (x0).

As a measure of merit, we use

D2
m,N (x) def= (Ām,N (x)− µ)2.

Its expectation includes both the bias and the variance of the estimate:〈
D2
m,N (x)

〉
= (〈Ām,N (x)〉 − µ)2 + Var[Ām,N (x)].

The number of samples needed to achieve a given error bar is (asymptotically) proportional
to the variance of the estimate Ā0,N . If the samples were uncorrelated, this variance would be
σ2/N where σ2 is the variance of A(x). This motivates the following measure of the effect of
correlated samples, introduced in [4] and used elsewhere, e.g. [6].

Definition 1 The statistical inefficiency of a Markov chain P w.r.t. an observable A(x) is
defined by

Φ = lim
N→∞

Var[Ā0,N (x0)]
σ2/N

where σ2 is the variance of A(x).

Though the quantity Φ is typically greater than 1, it can be less than 1, as illustrated by
Example 1 of Sec. 4.

A practical way of getting variance estimates is block averaging [3], though there is no way
of getting statistically rigorous estimates without prior knowledge. In practice, prior knowledge
might be provided in the form of a lower bound on N .

Though the effect of the starting state x0 is proportional to 1/N2 only, this nonetheless is
considerable in practical applications. The effect on the 1/N2 term due to omitting the first m
samples is the basis for the following definition:

Definition 2 A state x is said to be equilibrated for a given Markov process with respect to an
observable A(x) if

lim supN→∞N
2
〈
D2
m,N (x)−D2

0,N (x)
〉
≥ 0 for m ≥ 1.

This definition of equilibrated differs from that in [5]. This new definition corresponds more
closely to what matters in practice.

We defer further investigation of this property to Sec. 4 where an additional assumption is
made.
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A practical test for equilibration is the use of reverse cumulative averaging, in which cumu-
lative averages are computed starting at the end of the chain. This process is terminated when
the benefit of decreasing variance is outweighed by increasing bias due to including unequili-
brated values near the beginning of the chain. This is illustrated in [6, Fig. 1(a)] (where in the
caption, k′ means g and Eq. (3) means Eq. (4)).

3 Ergodic Finite-State Markov Processes

Consider a finite set of states x = 1, 2, . . . , ν and a Markov chain x0, x1, x2, . . . with transition
probability matrix P , i.e.,

Pr(xn+1 = y | xn = x) = Pxy.

Then the probability distributions πn,x = Pr(xn = x) satisfy the relation

πT
n+1 = πT

nP.

It follows that P is a right stochastic matrix, meaning that P ≥ 0 componentwise and Pe = e
where e is the vector of all ones. Since P completely characterizes the Markov chain, we identify
P with the Markov chain.

Assume that P is irreducible. This means that there does not exist a permutation matrix
J such that JPJT is block triangular with square diagonal blocks. From Perron-Frobenius
theory, it follows that there is a unique left eigenvector satisfying πTP = πT and πTe = 1, and,
moreover, that πT > 0. The elements of πT are the state probabilities for the unique stationary
distribution of the Markov chain. We can write

P = eπT +Q,

where Qe = 0, πTQ = 0T, the spectral radius of Q is ≤ 1, and det(I −Q) 6= 0. It follows that

P k = eπT +Qk, k ≥ 1.

Let A be an observable with values A(x) = Ax. Then 〈A(xn)〉 = πT
ndiag(A1, A2, . . . , Aν)e

(recalling that ν is the number of states), and the expectation for a stationary distribution

µ = 〈A(x)〉 = πTdiag(A1, A2, . . . , Aν)e,

where x denotes a random state with state probabilities πT. Define the deviation

D = diag(A1, A2, . . . , Aν)− µI,

and we have

〈(A(xn)− µ)(A(xn+k)− µ)〉 =
∑
x

∑
y

(Ax − µ)(Ay − µ)πn,x(P k)xy = πT
nDP

kDe. (1)

(Note that πn,x(P k)xy is a joint probability.) The variance of A(x) is σ2 = πTD2e.
The bias of an estimate due to a starting state x of the production run is given by the

following:

Proposition 1

〈Ām,N (x)〉 = µ+
1

N −m
eTxQ

m(I −Q)−1(I −QN−m)De.

where ex is the vector that has component x equal to 1 and the others set to zero.
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Proof.

〈Ām,N (x)〉 =
1

N −m

N−1∑
n=m

〈A(xn)〉 =
1

N −m

N−1∑
n=m

πT
n (µI +D)e = µ+

1
N −m

N−1∑
n=m

πT
nDe.

We have
πT
n = πT

0 P
n = πT + πT

0Q
n, for n ≥ 1. (2)

Hence,

〈Ām,N (x)〉 = µ+
1

N −m

N−1∑
n=m

πT
0Q

nDe.

�
We deduce from this that the value of m that minimizes the bias might be quite large. Of

most interest is a combined effect of bias and variance, which is measured by 〈D2
m,N (x)〉.

For simplicity we state the next result for the case m = 0; the generalization is straightfor-
ward.

Proposition 2〈
D2

0,N (x)
〉

=
α

N
+
β0(x)
N2

+
2
N2

πTDQN (I −Q)−2De− 1
N2

eTxQ
Nc

− 2
N2

N−1∑
n=0

eTxQ
nDQN−n(I −Q)−1De

where

α = πTc,

β0(x) = β + eTx c,

β = πTD2e− 2πTD(I −Q)−2De,

c = (I −Q)−1D(I +Q)(I −Q)−1De.

Proof. Using Eq. (1),

〈
(Ā0,N (x)− µ)2

〉
=

1
N2

N−1∑
n=0

〈
(A(xn)− µ)2

〉
+

2
N2

N−2∑
n=0

N−1∑
p=n+1

〈(A(xn)− µ)(A(xp)− µ)〉

=
1
N2

N−1∑
n=0

πT
nD

2e+
2
N2

N−2∑
n=0

πT
nD(P + · · ·+ PN−n−1)De

=
1
N2

N−1∑
n=0

πT
nD

2e+
2
N2

N−2∑
n=0

πT
nD(Q−QN−n)(I −Q)−1De,

where the last equality uses Eq. (2) and the fact that πTDe = 0. Using πT
n = πT +πT

0Q
n, n ≥ 1,

gives〈
(Ā0,N (x)− µ)2

〉
=

N − 1
N2

πTD2e+
1
N2

πT
0 (I −Q)−1(I −QN )D2e

+
2(N − 2)
N2

πTDQ(I −Q)−1De− 2
N2

πTD(Q2 −QN )(I −Q)−2De

+
2
N2

πT
0 (I −QN−1)(I −Q)−1DQ(I −Q)−1De

− 2
N2

N−2∑
n=0

πT
0Q

nDQN−n(I −Q)−1De.
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Note the simplification πTc = πTD(I +Q)(I −Q)−1De, and the proposition follows. �
For the given error metric, the dependence on the Markov process is encapsulated in Q and

the dependence on the observable in D.

4 Mixing Finite-State Markov Processes

We assume here that the Markov process is mixing, which means that πn always converges to
the stationary distribution π and implies that the spectral radius of Q is < 1.

Proposition 3 〈
D2
m,N (x)

〉
=
α

N
+
βm(x)
N2

+O
(

1
N3

)
where

βm(x) = mα+ β + eTxP
mc.

Proof. From Proposition 2, we have

〈
D2

0,N (x)
〉

=
α

N
+

1
N2

(
β + eTx c

)
+O

(
1
N3

)
.

Employing a conditional expectation, the “straightforward” generalization is

〈
D2
m,N (x)|xm = y

〉
=

α

N −m
+

1
(N −m)2

(
β + eTy c

)
+O

(
1
N3

)
,

whence 〈
D2
m,N (x)

〉
=

∑
y

πm,y
〈
D2
m,N (x)|xm = y

〉
=

α

N −m
+

1
(N −m)2

(
β + πT

mc
)

+O
(

1
N3

)
=

α

N
+

1
N2

(
mα+ β + eTxP

mc
)

+O
(

1
N3

)
.

�
A short calculation based on Proposition 3 gives the statistical inefficiency:

Φ =
α

σ2
= 1 +

2πTDQ(I −Q)−1De

πTD2e
.

The following is an immediate consequence:

Corollary 1
α = πTc ≥ 0.

It may be helpful to have a more direct proof based solely on first principles:
Alternative proof. Defining Π = diag(π), we have

πTc = eTΠD(I +Q)(I −Q)−1De = eTD(I −Q)−T(I −Q)TΠ(I +Q)(I −Q)−1De.

With v = (I −Q)−1De, this becomes

πTc = vT(I −Q)TΠ(I +Q)v = vT(I −QTΠQ)v = vT(I − PTΠP )v = vTΠ(I − P̂P )v
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where P̂ = Π−1PTΠ. The matrix P̂ is a right stochastic matrix with stationary probability
vector πT. It gives the transition probability for what is called the time reversal of the process [2].
Hence the product P̂P is a right stochastic matrix for stationary probability vector πT. With
w = Π1/2v, we have

πTc = wT(I −Π1/2P̂PΠ−1/2)w.

This must be nonnegative because Π1/2P̂PΠ−1/2 is a symmetric matrix similar to a matrix P̂P
whose spectral radius is one. �

The proof of the following is short and straightforward:

Proposition 4 State x is equilibrated if and only if

β0(x) ≤ βm(x) for m ≥ 1.

This can be rewritten as
eTx (I − Pm)c ≤ mπTc for m ≥ 1

or as
eTx (I −Qm)c ≤ (m+ 1)πTc for m ≥ 1. (3)

Proof. We have from Proposition 3 that

lim supN→∞N
2
〈
D2
m,N (x)−D2

0,N (x)
〉

= βm(x)− β0(x).

�
The definition proposed in [5] requires that an equilibrated state x be “as good as random,”

meaning generally that β0(x)) ≤ 〈β0(x)〉. This is equivalent to eTx c ≤ πTc, which is perhaps
more stringent than the requirement of Eq. (3).

The proof of the following is straightforward:

Proposition 5
〈βm(x)− β0(x)〉 = mα ≥ 0.

What this result means is that for each m there is a positive probability that condition (3) is
satisfied by a random state x, because the probability that a random variable exceeds or equals
its expectation is positive.

Following is a concrete example:

Example 1 Let the observable be given by µI +D with

D = diag(1,−1, 0),

and the process by P = eπT +Q with

πT =
[

1− ε
2

1− ε
2

ε

]
, Q =

1
2
λDeeTD,

subject to the conditions 0 < ε < 1 and |λ| ≤ 1− ε. The variance σ2 = πTD2e = 1− ε. Using
the relation QDe = λDe, we get c = (1 + λ)(1 − λ)−1D2e, α = πTc = (1 − ε)(1 + λ)/(1 − λ),
and the statistical inefficiency

Φ =
1 + λ

1− λ
.

Example 2 (Continuation of example 1.) The definition of equilibrated, Eq. (3) simplifies to
eTx c ≤ (m+ 1)πTc, for m ≥ 1. Hence, we need only that

eTxD
2e ≤ 2(1− ε).

For x = 1, 2 this amounts to ε ≤ 1
2 ; whereas for x = 3, this always holds. Hence, state 3 is

always equilibrated and states 1 and 2 only if their combined probability is at least one half.
Therefore, the probability of a random state being equilibrated is always at least one half.
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5 Discussion

The utility of the proposed definition of equilibrated is greatly enhanced if the following is true:

Open question 1 Can the characterization of being equilibrated given by Proposition 4 be simpli-
fied? In particular, can it be shown that if inequality (3) holds for m = 1, it must also hold for
m ≥ 2? Or, at least, can a sufficient condition be obtained that does not involve enumerating
the values m = 1, 2, . . .?

Additionally, it seems particularly difficult to simplify the equilibration condition unless the
following is true:

Open question 2 Is πTc > 0 if c 6= 0?

It is unlikely that the approach taken to prove the corollary to Proposition 3 can be strength-
ened to affirm the second open question. Such an approach seems to require that the eigenvalue
1 of the matrix P̂P be of multiplicity 1 (where P̂ is defined in the proof.) The example that
follows shows that this need not be the case:

Example 3 There exists an irreducible right stochastic matrix P for which the associated Markov
process is mixing and yet P̂P is reducible: Let P be the 4 by 4 matrix 1

4ee
T + 1

4uv
T with

u =
[

1 −1 1 −1
]T and v =

[
1 1 −1 −1

]T. Then πT = 1
4e

T and P̂P is block
diagonal.

Finally, intuition suggests that equilibrated states should be bountiful in the sense that if a
state is chosen at random from the distribution π, the probability that it is equilibrated is not
“too low”:

Open question 3 Is there a a lower bound on the probability that a random state is equilibrated,
i.e., a positive number θ independent of m such that Pr(β0(x) ≤ βm(x)) ≥ θ for all m ≥ 1? Is
there such a bound that is independent of D, Q, and/or π, e.g., θ = 1

2?
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